These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 5929749)

  • 61. Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid.
    Williams PA; Murray K
    J Bacteriol; 1974 Oct; 120(1):416-23. PubMed ID: 4418209
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The kinetic characterization and X-ray structure of a putative benzoylformate decarboxylase from M. smegmatis highlights the difficulties in the functional annotation of ThDP-dependent enzymes.
    Andrews FH; Horton JD; Shin D; Yoon HJ; Logsdon MG; Malik AM; Rogers MP; Kneen MM; Suh SW; McLeish MJ
    Biochim Biophys Acta; 2015 Aug; 1854(8):1001-9. PubMed ID: 25936776
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The Mandelate Pathway, an Alternative to the Phenylalanine Ammonia Lyase Pathway for the Synthesis of Benzenoids in Ascomycete Yeasts.
    Valera MJ; Boido E; Ramos JC; Manta E; Radi R; Dellacassa E; Carrau F
    Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32561586
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Regulation of valine catabolism in Pseudomonas putida.
    Marshall VD; Sokatch JR
    J Bacteriol; 1972 Jun; 110(3):1073-81. PubMed ID: 5030618
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Induction specificity and catabolite repression of the early enzymes in camphor degradation by Pseudomonas putida.
    Hartline RA; Gunsalus IC
    J Bacteriol; 1971 May; 106(2):468-78. PubMed ID: 5573731
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Regulation of leucine catabolism in Pseudomonas putida.
    Massey LK; Conrad RS; Sokatch JR
    J Bacteriol; 1974 Apr; 118(1):112-20. PubMed ID: 4150714
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A mutant of Pseudomonas putida with altered regulation of the enzymes for degradation of phenol and cresols.
    Wigmore GJ; Bayly RC
    Biochem Biophys Res Commun; 1974 Sep; 60(1):48-55. PubMed ID: 4371622
    [No Abstract]   [Full Text] [Related]  

  • 68. Re-design of Saccharomyces cerevisiae flavocytochrome b2: introduction of L-mandelate dehydrogenase activity.
    Sinclair R; Reid GA; Chapman SK
    Biochem J; 1998 Jul; 333 ( Pt 1)(Pt 1):117-20. PubMed ID: 9639570
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Comparative immunological studies of two Pseudomonas enzymes.
    Stanier RY; Wachter D; Gasser C; Wilson AC
    J Bacteriol; 1970 May; 102(2):351-62. PubMed ID: 4986759
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mandelate racemase from Pseudomonas putida. Subunit composition and absolute divalent metal ion requirement.
    Fee JA; Hegeman GD; Kenyon GL
    Biochemistry; 1974 Jun; 13(12):2528-32. PubMed ID: 4831901
    [No Abstract]   [Full Text] [Related]  

  • 71. Acyloin formation by benzoylformate decarboxylase from Pseudomonas putida.
    Wilcocks R; Ward OP; Collins S; Dewdney NJ; Hong Y; Prosen E
    Appl Environ Microbiol; 1992 May; 58(5):1699-704. PubMed ID: 1622241
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mechanistic and active-site studies on D(--)-mandelate dehydrogenase from Rhodotorula graminis.
    Baker DP; Kleanthous C; Keen JN; Weinhold E; Fewson CA
    Biochem J; 1992 Jan; 281 ( Pt 1)(Pt 1):211-8. PubMed ID: 1731758
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Regulation of the enzymes of tyrosine catabolism in Tetrahymena pyriformis.
    Whitlow KJ; D'Iorio A; Mavrides C
    Biochim Biophys Acta; 1972 May; 264(3):440-9. PubMed ID: 4402140
    [No Abstract]   [Full Text] [Related]  

  • 74. Microbial metabolism of mandelate: a microcosm of diversity.
    Fewson CA
    FEMS Microbiol Rev; 1988; 4(2):85-110. PubMed ID: 3078743
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Defective phage and chromosome mobilization in Pseudomonas putida.
    Chakrabarty AM; Gunsalus IC
    Proc Natl Acad Sci U S A; 1969 Dec; 64(4):1217-23. PubMed ID: 5271748
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Regulation of the enzymes of the beta-ketoadipate pathway in Moraxella calcoacetica. 2. The role of protocatechuate as inducer.
    Cánovas JL; Wheelis ML; Stanier RY
    Eur J Biochem; 1968 Jan; 3(3):293-304. PubMed ID: 5645525
    [No Abstract]   [Full Text] [Related]  

  • 77. The catalytic role of tyrosine 254 in flavocytochrome b2 (L-lactate dehydrogenase from baker's yeast). Comparison between the Y254F and Y254L mutant proteins.
    Gondry M; Dubois J; Terrier M; Lederer F
    Eur J Biochem; 2001 Sep; 268(18):4918-27. PubMed ID: 11559361
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Pseudomonas putida mutants defective in the metabolism of the products of meta fission of catechol and its methyl analogues.
    Wigmore GJ; Bayly RC; Di Berardino D
    J Bacteriol; 1974 Oct; 120(1):31-7. PubMed ID: 4418942
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Regulation of enzyme synthesis in the tryptophan pathway of Acinetobacter calcoaceticus.
    Cohn W; Crawford IP
    J Bacteriol; 1976 Jul; 127(1):367-79. PubMed ID: 931950
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Structural and kinetic analysis of catalysis by a thiamin diphosphate-dependent enzyme, benzoylformate decarboxylase.
    Polovnikova ES; McLeish MJ; Sergienko EA; Burgner JT; Anderson NL; Bera AK; Jordan F; Kenyon GL; Hasson MS
    Biochemistry; 2003 Feb; 42(7):1820-30. PubMed ID: 12590569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.