These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 5929749)

  • 81. An assay for mandelate racemase using high-performance liquid chromatography.
    Bearne SL; St Maurice M; Vaughan MD
    Anal Biochem; 1999 May; 269(2):332-6. PubMed ID: 10222006
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Four-Step Pathway from Phenylpyruvate to Benzylamine, an Intermediate to the High-Energy Propellant CL-20.
    Pandey RP; Casini A; Voigt CA; Gordon DB
    ACS Synth Biol; 2021 Sep; 10(9):2187-2196. PubMed ID: 34491727
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Mechanism of the reaction catalyzed by mandelate racemase: structure and mechanistic properties of the D270N mutant.
    Schafer SL; Barrett WC; Kallarakal AT; Mitra B; Kozarich JW; Gerlt JA; Clifton JG; Petsko GA; Kenyon GL
    Biochemistry; 1996 May; 35(18):5662-9. PubMed ID: 8639525
    [TBL] [Abstract][Full Text] [Related]  

  • 84. D-lysine catabolic pathway in Pseudomonas putida: interrelations with L-lysine catabolism.
    Chang YF; Adams E
    J Bacteriol; 1974 Feb; 117(2):753-64. PubMed ID: 4359655
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Genetic control of enzyme induction in the -ketoadipate pathway of Pseudomonas putida: two-point crosses with a regulatory mutant strain.
    Wu CH; Ornston MK; Ornston LN
    J Bacteriol; 1972 Feb; 109(2):796-802. PubMed ID: 5058453
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Reaction intermediate analogues for mandelate racemase: interaction between Asn 197 and the alpha-hydroxyl of the substrate promotes catalysis.
    St Maurice M; Bearne SL
    Biochemistry; 2000 Nov; 39(44):13324-35. PubMed ID: 11063568
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Regulation of enzymes of the 3,5-xylenol-degradative pathway in Pseudomonas putida: evidence for a plasmid.
    Hopper DJ; Kemp PD
    J Bacteriol; 1980 Apr; 142(1):21-6. PubMed ID: 6989805
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways.
    Feist CF; Hegeman GD
    J Bacteriol; 1969 Nov; 100(2):869-77. PubMed ID: 5354952
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Aromatic metabolism in the fungi. Growth of Rhodotorula mucilaginosa in p-hydroxybenzoate-limited chemostats and the effects of growth rate on the synthesis of enzymes of the 3-oxoadipate pathway.
    Huber TJ; Street JR; Bull AT; Cook KA; Cain RB
    Arch Microbiol; 1975; 102(2):139-44. PubMed ID: 1090273
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Oxidative decarboxylation of mandelic acid derivative by recombinant Escherichia coli: a novel method of ethyl vanillin synthesis.
    Pan XX; Li JJ; Wang MG; He WS; Jia CS; Zhang XM; Feng B; Li DL; Zeng Z
    Biotechnol Lett; 2013 Jun; 35(6):921-7. PubMed ID: 23430129
    [TBL] [Abstract][Full Text] [Related]  

  • 91. [Interrelationships between carnitine metabolism and fatty acid assimilation in Pseudomonas putida (author's transl)].
    Kleber HP; Seim H; Aurich H; Strack E
    Arch Microbiol; 1978 Feb; 116(2):213-20. PubMed ID: 565193
    [TBL] [Abstract][Full Text] [Related]  

  • 92. One-Pot Synthesis of Phenylglyoxylic Acid from Racemic Mandelic Acids via Cascade Biocatalysis.
    Tang CD; Ding PJ; Shi HL; Jia YY; Zhou MZ; Yu HL; Xu JH; Yao LG; Kan YC
    J Agric Food Chem; 2019 Mar; 67(10):2946-2953. PubMed ID: 30807132
    [TBL] [Abstract][Full Text] [Related]  

  • 93. L-mandelate dehydrogenase from Rhodotorula graminis: comparisons with the L-lactate dehydrogenase (flavocytochrome b2) from Saccharomyces cerevisiae.
    Smékal O; Yasin M; Fewson CA; Reid GA; Chapman SK
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):103-7. PubMed ID: 8439280
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Mandelic acid racemase from Pseudomonas putida. Evidence favoring a carbanion intermediate in the mechanism of action.
    Kenyon GL; Hegeman GD
    Biochemistry; 1970 Oct; 9(21):4036-43. PubMed ID: 5458641
    [No Abstract]   [Full Text] [Related]  

  • 95. Control of the pathway of -aminobutyrate breakdown in Escherichia coli K-12.
    Dover S; Halpern YS
    J Bacteriol; 1972 Apr; 110(1):165-70. PubMed ID: 4552985
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Virtual screening of mandelate racemase mutants with enhanced activity based on binding energy in the transition state.
    Gu J; Liu M; Guo F; Xie W; Lu W; Ye L; Chen Z; Yuan S; Yu H
    Enzyme Microb Technol; 2014 Feb; 55():121-7. PubMed ID: 24411454
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Optimized enantioselective (S)-2-hydroxypropiophenone synthesis by free- and encapsulated-resting cells of Pseudomonas putida.
    Kordesedehi R; Asadollahi MA; Shahpiri A; Biria D; Nikel PI
    Microb Cell Fact; 2023 May; 22(1):89. PubMed ID: 37131175
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Two benzaldehyde dehydrogenases in bacterium N.C.I.B. 8250. Distinguishing properties and regulation.
    Livingstone A; Fewson CA; Kennedy SI; Zatman LJ
    Biochem J; 1972 Dec; 130(4):927-35. PubMed ID: 4656805
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Role and regulation of the ortho and meta pathways of catechol metabolism in pseudomonads metabolizing naphthalene and salicylate.
    Barnsley EA
    J Bacteriol; 1976 Feb; 125(2):404-8. PubMed ID: 1245462
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Mandelate racemase.
    Kenyon GL; Hegeman GD
    Methods Enzymol; 1977; 46():541-8. PubMed ID: 909443
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.