These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 5932402)

  • 21. Potassium accumulation and sodium efflux by Porphyra perforata tissues in lithium and magnesium sea water.
    EPPLEY RW
    J Gen Physiol; 1959 Sep; 43(1):29-38. PubMed ID: 13820476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport of rubidium and sodium in pancreatic islets.
    Sehlin J; Täljedal IB
    J Physiol; 1974 Oct; 242(2):505-15. PubMed ID: 4616997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The permeability of the sodium channel in Myxicola to the alkali cations.
    Ebert GA; Goldman L
    J Gen Physiol; 1976 Sep; 68(3):327-40. PubMed ID: 956090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the electrogenic sodium pump in cardiac Purkinje fibres.
    Eisner DA; Lederer WJ
    J Physiol; 1980 Jun; 303(1):441-74. PubMed ID: 7431244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lithium transport pathways in human red blood cells.
    Pandey GN; Sarkadi B; Haas M; Gunn RB; Davis JM; Tosteson DC
    J Gen Physiol; 1978 Aug; 72(2):233-47. PubMed ID: 690597
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energetics of amino acid transport into brain slices: effects of K+ depletion and Rb+ or Cs+ substitution on amino acid uptake.
    Banay-Schwartz M; Teller DN; Horn B; Lajtha A
    J Neurochem; 1977 Sep; 29(3):403-10. PubMed ID: 561166
    [No Abstract]   [Full Text] [Related]  

  • 27. Rubidium and sodium permeability of the ATP-sensitive K+ channel in single rat pancreatic beta-cells.
    Ashcroft FM; Kakei M; Kelly RP
    J Physiol; 1989 Jan; 408():413-29. PubMed ID: 2674421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of monovalent cations Li+, Na+, K+, NH4+, Rb+ and Cs+ on the solid and solution structures of the nucleic acid components. Metal ion binding and sugar conformation.
    Tajmir-Riahi HA; Messaoudi S
    J Biomol Struct Dyn; 1992 Oct; 10(2):345-65. PubMed ID: 1334674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reversibility and partial reactions of the Na(+)-K+ pump of rat erythrocytes.
    Duhm J; Zicha J
    Physiol Bohemoslov; 1990; 39(1):3-14. PubMed ID: 2142785
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Occlusion of rubidium ions by the sodium-potassium pump: its implications for the mechanism of potassium transport.
    Glynn IM; Richards DE
    J Physiol; 1982 Sep; 330():17-43. PubMed ID: 6294286
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potassium activated phosphatase from human red blood cells. The effects of p-nitrophenylphosphate on carbon fluxes.
    Garrahan PJ; Rega AF
    J Physiol; 1972 Jun; 223(2):595-617. PubMed ID: 4339052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binding of monovalent cations to Na+,K+-dependent ATPase purified from porcine kidney. I. Simultaneous binding of three sodium and two potassium or rubidium ions to the enzyme.
    Yamaguchi M; Tonomura Y
    J Biochem; 1980 Nov; 88(5):1365-75. PubMed ID: 6257664
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cationic selectivity and competition at the sodium entry site in frog skin.
    Benos DJ; Mandel LJ; Simon SA
    J Gen Physiol; 1980 Aug; 76(2):233-47. PubMed ID: 6251157
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strophanthidin-sensitive transport of cesium and sodium in muscle cells.
    Sjodin RA; Beaugé LA
    Science; 1967 Jun; 156(3779):1248-50. PubMed ID: 6025547
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The interaction of monovalent cations with the sodium pump of low-potassium goat erythrocytes.
    Cavieres JD; Ellory JC
    J Physiol; 1977 Sep; 271(1):289-318. PubMed ID: 144181
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sodium, an obligate growth requirement for predominant rumen bacteria.
    Caldwell DR; Hudson RF
    Appl Microbiol; 1974 Mar; 27(3):549-52. PubMed ID: 4856854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of rubidium ions and membrane potentials on the intracellular sodium activity of sheep Purkinje fibres.
    Eisner DA; Lederer WJ; Vaughan-Jones RD
    J Physiol; 1981 Aug; 317():189-205. PubMed ID: 7310732
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of sickling on ion transport. II. The effect of sickling on sodium and cesium transport.
    TOSTESON DC
    J Gen Physiol; 1955 Sep; 39(1):55-67. PubMed ID: 13252235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic mechanism of ATP action in Na(+)-K(+)-Cl- cotransport of HeLa cells determined by Rb+ influx studies.
    Ikehara T; Yamaguchi H; Hosokawa K; Miyamoto H
    Am J Physiol; 1990 Apr; 258(4 Pt 1):C599-609. PubMed ID: 2333946
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellular site of active K absorption in the guinea-pig distal colonic epithelium.
    Dörge A; Beck FX; Rechkemmer G
    Pflugers Arch; 1998 Jul; 436(2):280-8. PubMed ID: 9594029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.