BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 593287)

  • 21. UV-enhanced reactivation of a UV-damaged reporter gene suggests transcription-coupled repair is UV-inducible in human cells.
    Francis MA; Rainbow AJ
    Carcinogenesis; 1999 Jan; 20(1):19-26. PubMed ID: 9934845
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clinical, genetic and DNA repair studies on a consecutive series of patients with xeroderma pigmentosum.
    Pawsey SA; Magnus IA; Ramsay CA; Benson PF; Giannelli F
    Q J Med; 1979 Apr; 48(190):179-210. PubMed ID: 504548
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative studies of host-cell reactivation, cellular capacity and enhanced reactivation of herpes simplex virus in normal, xeroderma pigmentosum and Cockayne syndrome fibroblasts.
    Ryan DK; Rainbow AJ
    Mutat Res; 1986 Jul; 166(1):99-111. PubMed ID: 3014327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repair of UV-endonuclease-susceptible sites in the 7 complementation groups of xeroderma pigmentosum A through G.
    Zelle B; Lohman PH
    Mutat Res; 1979 Sep; 62(2):363-8. PubMed ID: 503100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Induction of sister chromatid exchanges in fibroblasts from normal donors and from patients with xeroderma pigmentosum after combined treatment with ultraviolet radiation and modulated low frequency electric currents.
    Fackel N; Dertinger H; Wolf GK
    Eur J Dermatol; 1998; 8(7):483-7. PubMed ID: 9854159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Untransformed xeroderma pigmentosum cells are not hypersensitive to sister-chromatid exchange production by ethyl methanesulphonate--implications for the use of transformed cell lines and for the mechanism by which SCE arise.
    Heddle JA; Arlett CF
    Mutat Res; 1980 Aug; 72(1):119-25. PubMed ID: 6255322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Skin cancer and chromosomal aberrations induced by ultraviolet radiation. Evidence for lack of correlation in xeroderma pigmentosum variant and group E patients.
    Seguin LR; Ganges MB; Tarone RE; Robbins JH
    Cancer Genet Cytogenet; 1992 Jun; 60(2):111-6. PubMed ID: 1606553
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diagnosis of eight groups of xeroderma pigmentosum by genetic complementation using recombinant adenovirus vectors.
    Yamashita T; Okura M; Ishii-Osai Y; Hida T
    J Dermatol; 2016 Oct; 43(10):1167-1173. PubMed ID: 26971583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Repair of ultraviolet light damage in a variety of human fibroblast cell strains.
    Lehmann AR; Kirk-Bell S; Arlett CF; Harcourt SA; de Weerd-Kastelein EA; Keijzer W; Hall-Smith P
    Cancer Res; 1977 Mar; 37(3):904-10. PubMed ID: 837385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancing effects of cinoxate and methyl sinapate on the frequencies of sister-chromatid exchanges and chromosome aberrations in cultured mammalian cells.
    Shimoi K; Nakamura Y; Noro T; Tomita I; Sasaki YF; Imanishi H; Matsumoto K; Shirasu Y
    Mutat Res; 1989 Jun; 212(2):213-21. PubMed ID: 2499777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced transformation of xeroderma pigmentosum variant cells by ultraviolet light-irradiated simian virus 40.
    Hall JD; Tokuno SI
    Cancer Res; 1979 Oct; 39(10):4064-8. PubMed ID: 225015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unscheduled DNA synthesis in xeroderma pigmentosum cells after microinjection of yeast photoreactivating enzyme.
    Zwetsloot JC; Hoeymakers JH; Vermeulen W; Eker AP; Bootsma D
    Mutat Res; 1986 Mar; 165(2):109-15. PubMed ID: 3951462
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Defect in UV-induced unscheduled DNA synthesis in cultured epidermal keratinocytes from xeroderma pigmentosum.
    Kondo S; Satoh Y; Kuroki T
    Mutat Res; 1987 Jan; 183(1):95-101. PubMed ID: 2432425
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clinical and photobiological characteristics of Japanese xeroderma pigmentosum variant.
    Ichihashi M; Fujiwara Y
    Br J Dermatol; 1981 Jul; 105(1):1-12. PubMed ID: 7259973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential repair of 1-beta-D-arabinofuranosylcytosine-detectable sites in DNA of human fibroblasts exposed to ultraviolet light and 4-nitroquinoline 1-oxide.
    Mirzayans R; Paterson MC
    Mutat Res; 1991 Jul; 255(1):57-65. PubMed ID: 1906130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resistance of plateau-phase human normal and xeroderma pigmentosum fibroblasts to the cytotoxic effect of ultraviolet light.
    Chan GL; Little JB
    Mutat Res; 1979 Dec; 63(2):401-12. PubMed ID: 522880
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Defective postreplication repair in xeroderma pigmentosum variant fibroblasts.
    Boyer JC; Kaufmann WK; Brylawski BP; Cordeiro-Stone M
    Cancer Res; 1990 May; 50(9):2593-8. PubMed ID: 2109654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Correction by the ERCC2 gene of UV sensitivity and repair deficiency phenotype in a subset of trichothiodystrophy cells.
    Mezzina M; Eveno E; Chevallier-Lagente O; Benoit A; Carreau M; Vermeulen W; Hoeijmakers JH; Stefanini M; Lehmann AR; Weber CA
    Carcinogenesis; 1994 Aug; 15(8):1493-8. PubMed ID: 8055625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Replication of damaged DNA: molecular defect in xeroderma pigmentosum variant cells.
    Cordonnier AM; Fuchs RP
    Mutat Res; 1999 Oct; 435(2):111-9. PubMed ID: 10556591
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repair of DNA damage after exposure to 4-nitroquinoline-1-oxide in heterokaryons derived from xeroderma pigmentosum cells.
    Zelle B; Bootsma D
    Mutat Res; 1980 May; 70(3):373-81. PubMed ID: 6770261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.