These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 593330)

  • 41. An efficient analytical platform for on-line microfluidic profiling of neuroactive snake venoms towards nicotinic receptor affinity.
    Heus F; Vonk F; Otvos RA; Bruyneel B; Smit AB; Lingeman H; Richardson M; Niessen WM; Kool J
    Toxicon; 2013 Jan; 61():112-24. PubMed ID: 23159399
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evidence for specific adenosine receptors at cholinergic nerve endings.
    Silinsky EM
    Br J Pharmacol; 1980; 71(1):191-4. PubMed ID: 6258686
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Snake venoms and the neuromuscular junction.
    Lewis RL; Gutmann L
    Semin Neurol; 2004 Jun; 24(2):175-9. PubMed ID: 15257514
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neurotropic effects of venoms and other factors that promote prey acquisition.
    Gennaro JF; Hall HP; Casey ER; Hayes WK
    J Exp Zool A Ecol Genet Physiol; 2007 Sep; 307(9):488-99. PubMed ID: 17620305
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of presynaptic polypeptide neurotoxins from tiger snake venom (notechis-II-5 and notexin) on frog neuromuscular junction.
    Magazanik LG; Slavnova TI
    Physiol Bohemoslov; 1978; 27(5):421-9. PubMed ID: 32567
    [No Abstract]   [Full Text] [Related]  

  • 46. Regulation of acetylcholine synthesis in nervous tissue.
    Haubrich DR; Chippendale TJ
    Life Sci; 1977 May; 20(9):1465-78. PubMed ID: 327179
    [No Abstract]   [Full Text] [Related]  

  • 47. Acetylcholine receptors at neuromuscular synapses: phylogenetic differences detected by snake alpha-neurotoxins.
    Burden SJ; Hartzell HC; Yoshikami D
    Proc Natl Acad Sci U S A; 1975 Aug; 72(8):3245-9. PubMed ID: 1081230
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular organization of the cholinergic vesicle.
    Whittaker VP
    Adv Cytopharmacol; 1974; 2():311-7. PubMed ID: 4440560
    [No Abstract]   [Full Text] [Related]  

  • 49. Characterization of high affinity choline uptake by Torpedo californica T-sacs.
    Rothlein JE; Parsons SM
    J Neurochem; 1979 Dec; 33(6):1189-94. PubMed ID: 552399
    [No Abstract]   [Full Text] [Related]  

  • 50. Recent advances in chemistry and pharmacology of snake toxins.
    Lee CY
    Adv Cytopharmacol; 1979; 3():1-16. PubMed ID: 157674
    [No Abstract]   [Full Text] [Related]  

  • 51. Lambert-Eaton syndrome antibodies inhibit acetylcholine release and P/Q-type Ca2+ channels in electric ray nerve endings.
    Satoh Y; Hirashima N; Tokumaru H; Takahashi MP; Kang J; Viglione MP; Kim YI; Kirino Y
    J Physiol; 1998 Apr; 508 ( Pt 2)(Pt 2):427-38. PubMed ID: 9508807
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of stimulation and hemicholinium (HC-3) on the fine structure of nerve endings in the superior cervical ganglion of the cat.
    Párducz A; Fehér O; Joó F
    Brain Res; 1971 Nov; 34(1):61-72. PubMed ID: 4330970
    [No Abstract]   [Full Text] [Related]  

  • 53. Interaction of a spin-labeled long chain acylcholine with the cholinergic receptor protein in its membrane environment.
    Brisson AD; Scandella CJ; Bienvenüe A; Devaux PF; Cohen JB; Changeux JP
    Proc Natl Acad Sci U S A; 1975 Mar; 72(3):1087-91. PubMed ID: 165483
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of frequency of stimulation on the inhibition by noradrenaline of the acetylcholine output from parasympathetic nerve terminals.
    Knoll J; Vizi ES
    Br J Pharmacol; 1971 Jun; 42(2):263-72. PubMed ID: 5091159
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Botulinum neurotoxins: mechanism of action.
    Tighe AP; Schiavo G
    Toxicon; 2013 Jun; 67():87-93. PubMed ID: 23201505
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inhibition of red cell Ca2+-dependent K+ channels by snake venoms.
    Alvarez J; García-Sancho J
    Biochim Biophys Acta; 1989 Apr; 980(2):134-8. PubMed ID: 2930782
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ligand interactions with cholinergic receptor-enriched membranes from Torpedo: influence of agonist exposure on receptor properties.
    Weiland G; Georgia B; Wee VT; Chignell CF; Taylor P
    Mol Pharmacol; 1976 Nov; 12(6):1091-105. PubMed ID: 187925
    [No Abstract]   [Full Text] [Related]  

  • 58. Choline transport is not coupled to acetylcholine synthesis.
    Kessler PD; Marchbanks RM
    Nature; 1979 Jun; 279(5713):542-4. PubMed ID: 450100
    [No Abstract]   [Full Text] [Related]  

  • 59. Effect of cellular desialylation on choline high affinity uptake and ecto-acetylcholinesterase activity of cholinergic neuroblasts.
    Stefanović V; Massarelli R; Mandel P; Rosenberg A
    Biochem Pharmacol; 1975 Oct; 24(20):1923-8. PubMed ID: 172090
    [No Abstract]   [Full Text] [Related]  

  • 60. Snake venoms: toolbox of the neurobiologist.
    Mebs D
    Endeavour; 1989; 13(4):157-61. PubMed ID: 2482807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.