These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 5935805)

  • 1. Major genes for resistance and the formation of secondary hyphae by Erysiphe graminis f. sp.
    McCoy MS; Ellingboe AH
    Phytopathology; 1966 Jun; 56(6):683-6. PubMed ID: 5935805
    [No Abstract]   [Full Text] [Related]  

  • 2. Baseline sensitivity to proquinazid in Blumeria graminis f. sp. tritici and Erysiphe necator and cross-resistance with other fungicides.
    Genet JL; Jaworska G
    Pest Manag Sci; 2009 Aug; 65(8):878-84. PubMed ID: 19418441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathogen-derived nitric oxide influences formation of the appressorium infection structure in the phytopathogenic fungus Blumeria graminis.
    Prats E; Carver TL; Mur LA
    Res Microbiol; 2008; 159(6):476-80. PubMed ID: 18554873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Germination of conidia and formation of appressoria and secondary hyphae in Erysiphe graminis f. sp. tritici.
    Masri SS; Ellingboe AH
    Phytopathology; 1966 Mar; 56(3):304-8. PubMed ID: 5905294
    [No Abstract]   [Full Text] [Related]  

  • 5. The barley apoptosis suppressor homologue BAX inhibitor-1 compromises nonhost penetration resistance of barley to the inappropriate pathogen Blumeria graminis f. sp. tritici.
    Eichmann R; Schultheiss H; Kogel KH; Hückelhoven R
    Mol Plant Microbe Interact; 2004 May; 17(5):484-90. PubMed ID: 15141952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of the development of powdery mildes (Erysiphe graminis f. sp. hordei Marchal) on barley. II. Primary appressoria formation.
    Paulech C
    Biologia (Bratisl); 1968; 23(4):281-8. PubMed ID: 5666265
    [No Abstract]   [Full Text] [Related]  

  • 7. A certain but non-exclusive association between Polymyxa graminis special forms and cereals.
    Vaïanopoulos C; Bragard C; Dieryck B; Moreau V; Maraite H; Legréve A
    Commun Agric Appl Biol Sci; 2007; 72(4):745-50. PubMed ID: 18396804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary infection of wheat and barley by Erysiphe graminis.
    Masri SS; Ellingboe AH
    Phytopathology; 1966 Apr; 56(4):389-95. PubMed ID: 5908348
    [No Abstract]   [Full Text] [Related]  

  • 9. Metrafenone: studies on the mode of action of a novel cereal powdery mildew fungicide.
    Opalski KS; Tresch S; Kogel KH; Grossmann K; Köhle H; Hückelhoven R
    Pest Manag Sci; 2006 May; 62(5):393-401. PubMed ID: 16602071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable transformation of erysiphe graminis an obligate biotrophic pathogen of barley.
    Chaure P; Gurr SJ; Spanu P
    Nat Biotechnol; 2000 Feb; 18(2):205-7. PubMed ID: 10657129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of age on the fatty acid content of Blumeria graminis conidia.
    Muchembled J; Sahraoui AL; Grandmougin-Ferjani A; Sancholle M
    Biochem Soc Trans; 2000 Dec; 28(6):875-7. PubMed ID: 11171241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Genetic control of the wheat Triticum monococcum L. resistance to powdery mildew].
    Lebedeva TV; Peusha HO
    Genetika; 2006 Jan; 42(1):71-7. PubMed ID: 16523668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apoplastic pH signaling in barley leaves attacked by the powdery mildew fungus Blumeria graminis f. sp. hordei.
    Felle HH; Herrmann A; Hanstein S; Hückelhoven R; Kogel KH
    Mol Plant Microbe Interact; 2004 Jan; 17(1):118-23. PubMed ID: 14714875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superoxide and hydrogen peroxide play different roles in the nonhost interaction of barley and wheat with inappropriate formae speciales of Blumeria graminis.
    Trujillo M; Kogel KH; Hückelhoven R
    Mol Plant Microbe Interact; 2004 Mar; 17(3):304-12. PubMed ID: 15000397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localisation of genes for resistance against Blumeria graminis f.sp. hordei and Puccinia graminis in a cross between a barley cultivar and a wild barley (Hordeum vulgare ssp. spontaneum) line.
    Backes G; Madsen LH; Jaiser H; Stougaard J; Herz M; Mohler V; Jahoor A
    Theor Appl Genet; 2003 Jan; 106(2):353-62. PubMed ID: 12582863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA polymorphism among barley NILs of cv. Pallas, carrying genes for resistance to powdery mildew (Blumeria graminis f. sp. hordei).
    Czembor PC; Czembor JH
    J Appl Genet; 2004; 45(2):183-7. PubMed ID: 15131349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [cDNA libraries construction and screening in gene expression profiling of disease resistance in wheat].
    Luo M; Kong XY; Liu Y; Zhou RH; Jia JZ
    Yi Chuan Xue Bao; 2002 Sep; 29(9):814-9. PubMed ID: 12561230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peanut Clump virus transmission by Polymyxa graminis under controlled conditions.
    Dieryck B; Weyns J; Van Hese V; Bragard C; Legrève A
    Commun Agric Appl Biol Sci; 2008; 73(2):71-4. PubMed ID: 19226743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional contribution of chorismate synthase, anthranilate synthase, and chorismate mutase to penetration resistance in barley-powdery mildew interactions.
    Hu P; Meng Y; Wise RP
    Mol Plant Microbe Interact; 2009 Mar; 22(3):311-20. PubMed ID: 19245325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multilocus phylogenetic analyses within Blumeria graminis, a powdery mildew fungus of cereals.
    Inuma T; Khodaparast SA; Takamatsu S
    Mol Phylogenet Evol; 2007 Aug; 44(2):741-51. PubMed ID: 17346991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.