These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Natural F-actin. I. Direct isolation of F-actin from myofibrils and its physico-chemical properties. Hama H; Maruyama K; Noda H Biochim Biophys Acta; 1965 May; 102(1):249-60. PubMed ID: 4220731 [No Abstract] [Full Text] [Related]
5. Thermodynamical aspect of G-F transformations of actin. Kasai M Biochim Biophys Acta; 1969 Jun; 180(2):399-409. PubMed ID: 5795476 [No Abstract] [Full Text] [Related]
6. The action of thiol inhibitors on the interaction of F-actin and heavy meromyosin. Perry SV; Cotterill J Biochem J; 1964 Sep; 92(3):603-8. PubMed ID: 4220887 [No Abstract] [Full Text] [Related]
8. Exchange of F-actin-bound nucleotide in the presence and absence of myosin. Moos C; Estes JE; Eisenberg E Biochem Biophys Res Commun; 1966 May; 23(3):347-51. PubMed ID: 5960869 [No Abstract] [Full Text] [Related]
9. Effect of the H-meromyosin plus ATP system on F-actin. Tawada K; Oosawa F Biochim Biophys Acta; 1969 May; 180(1):199-201. PubMed ID: 5787267 [No Abstract] [Full Text] [Related]
10. The pre-steady state of the myosin-adenosine triphosphate system. IX. Effect of F-actin on the myosin-ATP system. Kinoshita N; Kanazawa T; Onishi H; Tonomura Y J Biochem; 1969 Apr; 65(4):567-79. PubMed ID: 4240977 [No Abstract] [Full Text] [Related]
11. Effects of heavy meromyosin and ATP on the particle length of F-actin. Takahashi K; Yagi K J Biochem; 1968 Aug; 64(2):271-3. PubMed ID: 5708330 [No Abstract] [Full Text] [Related]
12. The effects of pressure on F-G transformation of actin. Ikkai T; Ooi T Biochemistry; 1966 May; 5(5):1551-60. PubMed ID: 4960130 [No Abstract] [Full Text] [Related]
13. Actoyosin and myosin of vascular smooth muscle. Mallin ML Nature; 1965 Sep; 207(5003):1297-8. PubMed ID: 5884650 [No Abstract] [Full Text] [Related]
14. SOME PHYSICO-CHEMICAL PROPERTIES OF KI-EXTRACTED F-ACTIN. MARUYAMA K; HAMA H; ISHIKAWA Y Biochim Biophys Acta; 1965 Jan; 94():200-7. PubMed ID: 14273401 [No Abstract] [Full Text] [Related]
15. The effect of adenosine triphosphate, inorganic pyrophosphate and inorganic tripolyphosphate on the stability of cod myosin. Mackie IM Biochim Biophys Acta; 1966 Jan; 115(1):160-72. PubMed ID: 4286995 [No Abstract] [Full Text] [Related]
16. Mercurial-induced transformation of myosin prevented by adenosine triphosphate and pyrophosphate. Kominz DR Science; 1965 Sep; 149(3690):1374-5. PubMed ID: 4283926 [TBL] [Abstract][Full Text] [Related]
17. The polymerization of actin: extent of polymerization under pressure, volume change of polymerization, and relaxation after temperature jumps. Matthews JN; Yim PB; Jacobs DT; Forbes JG; Peters ND; Greer SC J Chem Phys; 2005 Aug; 123(7):074904. PubMed ID: 16229617 [TBL] [Abstract][Full Text] [Related]
18. Effect of dinitrophenylation of the properties of G- and F-actin. Gerber BR; Ooi T Biochim Biophys Acta; 1968 Jan; 154(1):162-74. PubMed ID: 5639004 [No Abstract] [Full Text] [Related]
19. Stabilizing actions of free nucleotides on the sulfhydryl groups of G-actin. Katz AM Biochemistry; 1965 Jun; 4(6):987-91. PubMed ID: 4284600 [No Abstract] [Full Text] [Related]
20. Dissociation of a complex of F-actin and H-meromyosin by addition of adenosine triphosphate. Yagi K; Nakata T; Sakakibara I J Biochem; 1965 Sep; 58(3):236-42. PubMed ID: 4221953 [No Abstract] [Full Text] [Related] [Next] [New Search]