These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 5938630)

  • 1. Anthraquinone pigments from Phoma foveata Foister.
    Bick IR; Rhee C
    Biochem J; 1966 Jan; 98(1):112-6. PubMed ID: 5938630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two new antimicrobial dimeric compounds: febrifuquinone, a vismione-anthraquinone coupled pigment and adamabianthrone, from two Psorospermum species.
    Tsaffack M; Nguemeving JR; Kuete V; Ndejouong Tchize Ble S; Mkounga P; Penlap Beng V; Hultin PG; Tsamo E; Nkengfack AE
    Chem Pharm Bull (Tokyo); 2009 Oct; 57(10):1113-8. PubMed ID: 19801869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of an anthraquinone pigment and a hydroxystilbene antibiotic from Xenorhabdus luminescens.
    Richardson WH; Schmidt TM; Nealson KH
    Appl Environ Microbiol; 1988 Jun; 54(6):1602-5. PubMed ID: 3415225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monodictyquinone A: a new antimicrobial anthraquinone from a sea urchin-derived fungus Monodictys sp.
    El-Beih AA; Kawabata T; Koimaru K; Ohta T; Tsukamoto S
    Chem Pharm Bull (Tokyo); 2007 Jul; 55(7):1097-8. PubMed ID: 17603212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient isolation of anthraquinone-derivatives from Trichoderma harzianum ETS 323.
    Liu SY; Lo CT; Chen C; Liu MY; Chen JH; Peng KC
    J Biochem Biophys Methods; 2007 Apr; 70(3):391-5. PubMed ID: 17067682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anthraquinones from Gladiolus gandavensis.
    Chen B; Wang DY; Ye Q; Li BG; Zhang GL
    J Asian Nat Prod Res; 2005 Jun; 7(3):197-204. PubMed ID: 15621627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New anthraquinone dimer from the root bark of Cassia artemisioides (Gaudich. Ex. DC) Randell.
    Zaman K; Khan MR; Ali M; Maitland DJ
    J Asian Nat Prod Res; 2011 Jan; 13(1):62-7. PubMed ID: 21253951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Effects of Physcion, Chrysophanol, Emodin, and Pachybasin on Germination and Appressorium Formation of the Barley ( Hordeum vulgare L.) Powdery Mildew Fungus Blumeria graminis f. sp. hordei (DC.) Speer.
    Hildebrandt U; Marsell A; Riederer M
    J Agric Food Chem; 2018 Apr; 66(13):3393-3401. PubMed ID: 29554805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransformation of the anthraquinones emodin and chrysophanol by cytochrome P450 enzymes. Bioactivation to genotoxic metabolites.
    Mueller SO; Stopper H; Dekant W
    Drug Metab Dispos; 1998 Jun; 26(6):540-6. PubMed ID: 9616189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic products of microorganisms. 185. The anthraquinones of the Aspergillus glaucus group. I. Occurrence, isolation, identification and antimicrobial activity.
    Anke H; Kolthoum I; Zähner H; Laatsch H
    Arch Microbiol; 1980 Jul; 126(3):223-30. PubMed ID: 7406630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water-soluble red pigments from Isaria farinosa and structural characterization of the main colored component.
    Velmurugan P; Lee YH; Nanthakumar K; Kamala-Kannan S; Dufossé L; Mapari SA; Oh BT
    J Basic Microbiol; 2010 Dec; 50(6):581-90. PubMed ID: 20806258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial glucosidation of 1,2,4-trihydroxy-9,10-anthraquinone (purpurin).
    Steinerová N; Matĕjů J; Cudlín J; Vanĕk Z
    Folia Microbiol (Praha); 1984; 29(6):433-40. PubMed ID: 6441760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rosenones A and B, new anthraquinone derivatives from Aitchisonia rosea.
    Noor AT; Begum A; Anis I; Parveen S; Malik A; Tareen RB
    J Asian Nat Prod Res; 2009; 11(3):209-12. PubMed ID: 19408143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Anthraquinones isolated from Morinda officinalis and Damnacanthus indicus].
    Yang YJ; Shu HY; Min ZD
    Yao Xue Xue Bao; 1992; 27(5):358-64. PubMed ID: 1442057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular absorption of anthraquinones emodin and chrysophanol in human intestinal Caco-2 cells.
    Teng ZH; Zhou SY; Ran YH; Liu XY; Yang RT; Yang X; Yuan CJ; Mei QB
    Biosci Biotechnol Biochem; 2007 Jul; 71(7):1636-43. PubMed ID: 17617731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anthraquinone derivatives from Heterophyllaea pustulata.
    Núñez Montoya SC; Agnese AM; Cabrera JL
    J Nat Prod; 2006 May; 69(5):801-3. PubMed ID: 16724844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies in mycological chemistry. XIX. "Product B" (averantin) [1,3,6,8-tetrahydroxy-2-(1-hydroxyhexyl)anthraquinone], a pigment from Aspergillus versicolor (Vuillemin) Tiraboschi.
    Birkinshaw JH; Roberts JC; Roffey P
    J Chem Soc Perkin 1; 1966; 9():855-7. PubMed ID: 5948685
    [No Abstract]   [Full Text] [Related]  

  • 18. [Studies on anthraquinones from the roots of rubia cordifolia l].
    Wang SX; Hua HM; Wu LJ; Li X; Zhu TR
    Yao Xue Xue Bao; 1992; 27(10):743-7. PubMed ID: 1293920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emodin, a toxic metabolite of Aspergillus wentii isolated from weevil-damaged chestnuts.
    Wells JM; Cole RJ; Kirksey JW
    Appl Microbiol; 1975 Jul; 30(1):26-8. PubMed ID: 1147616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental changes in the composition of five anthraquinones from Rheum palmatum as quantified by (1) H-NMR.
    Wang ZW; Wang JS; Yang MH; Luo JG; Kong LY
    Phytochem Anal; 2013; 24(4):329-35. PubMed ID: 23364921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.