These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 5941284)
1. Nutrition and metabolism of marine bacteria. XV. Relation of Na+-activated transport to the Na+ requirement of a marine pseudomonad for growth. Drapeau GR; Matula TI; MacLeod RA J Bacteriol; 1966 Jul; 92(1):63-71. PubMed ID: 5941284 [TBL] [Abstract][Full Text] [Related]
2. Nutrition and metabolism of marine bacteria. XVII. Ion-dependent retention of alpha-aminoisobutyric acid and its relation to Na+ dependent transport in a marine pseudomonad. Wong PT; Thompson J; MacLeod RA J Biol Chem; 1969 Feb; 244(3):1016-25. PubMed ID: 5769176 [No Abstract] [Full Text] [Related]
3. Potassium transport and the relationship between intracellular potassium concentration and amino acid uptake by cells of a marine pseudomonad. Thompson J; MacLeod RA J Bacteriol; 1974 Nov; 120(2):598-603. PubMed ID: 4455685 [TBL] [Abstract][Full Text] [Related]
4. Na+ and K+ gradients and alpha-aminoisobutyric acid transport in a marine pseudomonad. Thompson J; MacLeod RA J Biol Chem; 1973 Oct; 248(20):7106-11. PubMed ID: 4743515 [No Abstract] [Full Text] [Related]
5. NUTRITION AND METABOLISM OF MARINE BACTERIA. XIII. INTRACELLULAR CONCENTRATIONS OF SODIUM AND POTASSIUM IONS IN A MARINE PSEUDOMONAD. TAKACS FP; MATULA TI; MACLEOD RA J Bacteriol; 1964 Mar; 87(3):510-8. PubMed ID: 14129666 [TBL] [Abstract][Full Text] [Related]
6. NUTRITION AND METABOLISM OF MARINE BACTERIA. XII. ION ACTIVATION OF ADENOSINE TRIPHOSPHATASE IN MEMBRANES OF MARINE BACTERIAL CELLS. DRAPEAU GR; MACLEOD RA J Bacteriol; 1963 Jun; 85(6):1413-9. PubMed ID: 14047238 [TBL] [Abstract][Full Text] [Related]
7. Specific electron donor-energized transport of alpha-aminoisobutyric acid and K+ into intact cells of a marine pseudomonad. Thompson J; MacLeod RA J Bacteriol; 1974 Mar; 117(3):1055-64. PubMed ID: 4360537 [TBL] [Abstract][Full Text] [Related]
8. Na + -dependent amino acid transport in isolated membrane vesicles of a marine pseudomonad energized by electron donors. Sprott GD; MacLeod RA Biochem Biophys Res Commun; 1972 May; 47(4):838-45. PubMed ID: 4337324 [No Abstract] [Full Text] [Related]
9. Nature of the specificity of alcohol coupling to L-alanine transport into isolated membrane vesicles of a marine pseudomonad. Sprott GD; MacLeod RA J Bacteriol; 1974 Mar; 117(3):1043-54. PubMed ID: 4360536 [TBL] [Abstract][Full Text] [Related]
10. Third system for neutral amino acid transport in a marine pseudomonad. Pearce SM; Hildebrandt VA; Lee T J Bacteriol; 1977 Apr; 130(1):37-47. PubMed ID: 856786 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of Naplus-dependent amino acid transport using cells and membrane vesicles of a marine pseudomonad. Sprott GD; Drozdowski JP; Martin EL; MacLeod RA Can J Microbiol; 1975 Jan; 21(1):43-50. PubMed ID: 1116038 [TBL] [Abstract][Full Text] [Related]
12. Influence of cations on spheroplasts of marine bacteria functioning as osmometers. Rhodes ME; Payne WJ Appl Microbiol; 1967 May; 15(3):537-42. PubMed ID: 6035044 [TBL] [Abstract][Full Text] [Related]
13. Properties of alpha-aminoisobutyric acid transport in a thermophilic microorganism. Reizer J; Grossowicz N J Bacteriol; 1974 May; 118(2):414-24. PubMed ID: 4828307 [TBL] [Abstract][Full Text] [Related]
14. Characterization of neutral amino acid transport in a marine pseudomonad. Fein JE; MacLeod RA J Bacteriol; 1975 Dec; 124(3):1177-90. PubMed ID: 1194233 [TBL] [Abstract][Full Text] [Related]
15. Roles of Na+ and K+ in alpha-aminoisobutyric acid transport by the marine bacterium Vibrio alginolyticus. Tokuda H; Sugasawa M; Unemoto T J Biol Chem; 1982 Jan; 257(2):788-94. PubMed ID: 7054182 [TBL] [Abstract][Full Text] [Related]
16. Effect of inhibitors on alanine transport in isolated rabbit ileum. Chez RA; Palmer RR; Schultz SG; Curran PF J Gen Physiol; 1967 Nov; 50(10):2357-75. PubMed ID: 6063686 [TBL] [Abstract][Full Text] [Related]
17. The ouabain-sensitive fluxes of sodium and potassium in squid giant axons. Baker PF; Blaustein MP; Keynes RD; Manil J; Shaw TI; Steinhardt RA J Physiol; 1969 Feb; 200(2):459-96. PubMed ID: 5812424 [TBL] [Abstract][Full Text] [Related]
18. The sodium-alanine interaction in rabbit ileum. Effect of sodium on alanine fluxes. Hajjar JJ; Lamont AS; Curran PF J Gen Physiol; 1970 Mar; 55(3):277-96. PubMed ID: 5520503 [TBL] [Abstract][Full Text] [Related]
19. A role for inorganic ions in the maintenance of intracellular solute concentrations in a marine pseudomonad. Drapeau GR; MacLeod RA Nature; 1965 May; 206(983):531. PubMed ID: 5831853 [No Abstract] [Full Text] [Related]
20. Origin of the after-hyperpolarization that follows removal of depolarizing agents from the isolated superior cervical ganglion of the rat. Brown DA; Brownstein MJ; Scholfield CN Br J Pharmacol; 1972 Apr; 44(4):651-71. PubMed ID: 4625268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]