BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 594194)

  • 1. Oxidative phosphorylation in mitochondria from different fiber types of chicken muscles.
    Thakar JH
    Physiol Chem Phys; 1977; 9(3):285-95. PubMed ID: 594194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal muscle bioenergetics: a comparative study of mitochondria isolated from pigeon pectoralis, rat soleus, rat biceps brachii, pig biceps femoris and human quadriceps.
    Rasmussen UF; Vielwerth SE; Rasmussen HN
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Feb; 137(2):435-46. PubMed ID: 15123217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial function in sparrow pectoralis muscle.
    Kuzmiak S; Glancy B; Sweazea KL; Willis WT
    J Exp Biol; 2012 Jun; 215(Pt 12):2039-50. PubMed ID: 22623192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondria and blood supply of chicken skeletal muscle fibers in ontogenesis.
    Belichenko VM; Korostishevskaya IM; Maximov VF; Shoshenko CA
    Microvasc Res; 2004 Nov; 68(3):265-72. PubMed ID: 15501246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defect in oxidative phosphorylation in LV papillary muscle mitochondria of patients undergoing mitral valve replacement.
    Santosh S; Pawan K; Karpagam P; Kaushala M; Neela P
    Mitochondrion; 2006 Apr; 6(2):89-93. PubMed ID: 16554188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of skeletal muscle mitochondria respiration by adenine nucleotides: differential effect of ADP and ATP according to muscle contractile type in pigs.
    Gueguen N; Lefaucheur L; Fillaut M; Vincent A; Herpin P
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Feb; 140(2):287-97. PubMed ID: 15649776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial efficiency in rat skeletal muscle: influence of respiration rate, substrate and muscle type.
    Mogensen M; Sahlin K
    Acta Physiol Scand; 2005 Nov; 185(3):229-36. PubMed ID: 16218928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow-tonic muscle fibers and their potential innervation in the turtle, Pseudemys (Trachemys) scripta elegans.
    Callister RJ; Pierce PA; McDonagh JC; Stuart DG
    J Morphol; 2005 Apr; 264(1):62-74. PubMed ID: 15732049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial function during heavy exercise.
    Willis WT; Jackman MR
    Med Sci Sports Exerc; 1994 Nov; 26(11):1347-53. PubMed ID: 7837955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Respiratory system of Endomyces magnusii. Properties of mitochondria from cells grown on glycerol].
    Zviagil'skaia RA; Zelenshchikova VA; Ural'skaia LA; Kotel'nikova AV
    Biokhimiia; 1981 Jan; 46(1):3-10. PubMed ID: 7248373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats.
    Peterside IE; Selak MA; Simmons RA
    Am J Physiol Endocrinol Metab; 2003 Dec; 285(6):E1258-66. PubMed ID: 14607783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology.
    Gnaiger E
    Int J Biochem Cell Biol; 2009 Oct; 41(10):1837-45. PubMed ID: 19467914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of calcium in the control of respiration by muscle mitochondria.
    McMillin JB; Madden MC
    Med Sci Sports Exerc; 1989 Aug; 21(4):406-10. PubMed ID: 2528667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The respiratory effects of stanniocalcin-1 (STC-1) on intact mitochondria and cells: STC-1 uncouples oxidative phosphorylation and its actions are modulated by nucleotide triphosphates.
    Ellard JP; McCudden CR; Tanega C; James KA; Ratkovic S; Staples JF; Wagner GF
    Mol Cell Endocrinol; 2007 Jan; 264(1-2):90-101. PubMed ID: 17092635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A histochemical and enzymatic study of the muscle fiber types in the water monitor, Varanus salvator.
    Gleeson TT
    J Exp Zool; 1983 Aug; 227(2):191-201. PubMed ID: 6225835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myothermic, polarographic, and fluorometric data from mammalian muscles: correlations and an approach to a biochemical synthesis.
    Chapman JB; Gibbs CL; Loiselle DS
    Fed Proc; 1982 Feb; 41(2):176-84. PubMed ID: 7060743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial myopathies.
    DiMauro S; Bonilla E; Zeviani M; Nakagawa M; DeVivo DC
    Ann Neurol; 1985 Jun; 17(6):521-38. PubMed ID: 3927817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting the rate and energetics of mitochondrial oxidative phosphorylation.
    Wilson DF
    Med Sci Sports Exerc; 1994 Jan; 26(1):37-43. PubMed ID: 8133736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of adaptation to cold and moderate cooling on respiration and oxidative phosphorylation in the muscle mitochondria of albino rats].
    Rashevskaia DA
    Vopr Med Khim; 1976; 22(1):25-54. PubMed ID: 1025877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leucocyte energy metabolism. VII. Respiratory chain enzymes, oxygen consumption and oxidative phosphorylation of mitochondria isolated from leucocytes.
    Nessi P; Billesbolle S; Fornerod M; Maillard M; Frei J
    Enzyme; 1977; 22(3):183-95. PubMed ID: 862602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.