These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 594486)

  • 21. The reactivation of nitrate reductase from spinach (Spinacea oleracea L.) inactivated by NADH and cyanide: effects of peroxidase and associated systems.
    Maldonado JM; Notton BA; Hewitt EJ
    Planta; 1982 Dec; 156(4):289-94. PubMed ID: 24272572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The nitrate reductase activity of human saliva].
    Khramov VA
    Vopr Pitan; 1992; (5-6):65-8. PubMed ID: 1296370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrostatic properties deduced from refined structures of NADH-cytochrome b5 reductase and the other flavin-dependent reductases: pyridine nucleotide-binding and interaction with an electron-transfer partner.
    Nishida H; Miki K
    Proteins; 1996 Sep; 26(1):32-41. PubMed ID: 8880927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inactivation of the NADH-dependent activities of nitrate reductase by ferrate.
    Ramadoss CS; Steczko J; Axelrod B
    Acta Biochim Pol; 1985; 32(3):179-86. PubMed ID: 4090856
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrate reductase from Chlorella fusca. Reversible inactivation by thiols and by sulfite.
    Gómez-Moreno C; Palacián E
    Arch Biochem Biophys; 1974 Jan; 160(1):269-73. PubMed ID: 4151325
    [No Abstract]   [Full Text] [Related]  

  • 26. Nitrate reductase from Chlorella vulgaris. Reaction with manganese (III) pyrophosphate and with ferric o-phenanthroline.
    Funkhouser EA; Ackermann R
    Eur J Biochem; 1976 Jul; 66(2):225-8. PubMed ID: 181248
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reversible Inactivation of Nitrate Reductase by NADH and the Occurrence of Partially Inactive Enzyme in the Wheat Leaf.
    Aryan AP; Batt RG; Wallace W
    Plant Physiol; 1983 Mar; 71(3):582-7. PubMed ID: 16662870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relation between conformations and activities of lipoamide dehydrogenase. I. Relation between diaphorase and lipoamide dehydrogenase activities upon binding of FAD by the apoenzyme.
    Kalse JF; Veeger C
    Biochim Biophys Acta; 1968 Jun; 159(2):244-56. PubMed ID: 5657457
    [No Abstract]   [Full Text] [Related]  

  • 29. Interconversion of the active and inactive forms of Chlorella nitrate reductase.
    Moreno CG; Aparicio PJ; Palacián E; Losada M
    FEBS Lett; 1972 Oct; 26(1):11-4. PubMed ID: 4344288
    [No Abstract]   [Full Text] [Related]  

  • 30. Purification and Characterization of the Nitrate Reductase from the Diatom Thalassiosira pseudonana.
    Amy NK; Garrett RH
    Plant Physiol; 1974 Oct; 54(4):629-37. PubMed ID: 16658941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intracellular location of nitrate reductase and nitrite reductase. II. Wheat roots.
    Dalling MJ; Tolbert NE; Hageman RH
    Biochim Biophys Acta; 1972 Dec; 283(3):513-9. PubMed ID: 4405456
    [No Abstract]   [Full Text] [Related]  

  • 32. The reactivation of nitrate reductase from spinach (Spinacia oleracea L.) inactivated by NADH and cyanide, using trivalent manganese either generated by illuminated chloroplasts or as manganipyrophosphate.
    Maldonado JM; Notton BA; Hewitt EJ
    Planta; 1980 Nov; 150(3):242-8. PubMed ID: 24306689
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitrate reductase from Azotobacter chroococcum. Inactivation by oxidizing agents and reactivation with dithioerythritol.
    Vila R; Llobell A; Bárcena JA; Paneque A
    Biochem Biophys Res Commun; 1978 Oct; 84(4):943-9. PubMed ID: 728161
    [No Abstract]   [Full Text] [Related]  

  • 34. Nitrate reductase from Penicillium chrysogenum: the reduced flavin-adenine dinucleotide-dependent reaction.
    Renosto F; Schmidt ND; Segel IH
    Arch Biochem Biophys; 1982 Nov; 219(1):12-20. PubMed ID: 6817714
    [No Abstract]   [Full Text] [Related]  

  • 35. On the regulation of spinach nitrate reductase.
    Sanchez J; Heldt HW
    Plant Physiol; 1990 Mar; 92(3):684-9. PubMed ID: 16667335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on lipoamide dehydrogenase of Bakers' yeast. VI. Molecular weight and some properties.
    Misaka E
    J Biochem; 1966 Aug; 60(2):103-7. PubMed ID: 4291020
    [No Abstract]   [Full Text] [Related]  

  • 37. The role of molybdenum in the synthesis of nitrate reductase in cauliflower (Brassica oleracea L. var Botrytis L.) and spinach (Spinacea oleracea L.).
    Notton BA; Graf L; Hewitt EJ; Povey RC
    Biochim Biophys Acta; 1974 Sep; 364(1):45-58. PubMed ID: 4474017
    [No Abstract]   [Full Text] [Related]  

  • 38. The role of tungsten in the inhibition of nitrate reductase activity in spinach (spinacea oleracea L.) leaves.
    Notton BA; Hewitt EJ
    Biochem Biophys Res Commun; 1971 Aug; 44(3):702-10. PubMed ID: 4107835
    [No Abstract]   [Full Text] [Related]  

  • 39. On the Enzymatic hydrolysis of FAD in spinach leaves.
    Mistuda H; Tsuge H; Tomozawa Y; Kawai F
    J Vitaminol (Kyoto); 1970 Mar; 16(1):31-8. PubMed ID: 4393601
    [No Abstract]   [Full Text] [Related]  

  • 40. Flavin nucleotide nitrate reductase from spinach.
    Paneque A; Del Campo FF; Ramírez JM; Losada M
    Biochim Biophys Acta; 1965 Sep; 109(1):79-85. PubMed ID: 5864033
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.