These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 5944967)

  • 61. An active-site peptide containing the second essential carboxyl group of dextransucrase from Leuconostoc mesenteroides by chemical modifications.
    Funane K; Shiraiwa M; Hashimoto K; Ichishima E; Kobayashi M
    Biochemistry; 1993 Dec; 32(49):13696-702. PubMed ID: 8257704
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Dynamic reactivities of dextransucrase.
    Ditson SL; Sung SM; Mayer RM
    Arch Biochem Biophys; 1986 Aug; 249(1):53-60. PubMed ID: 2943225
    [TBL] [Abstract][Full Text] [Related]  

  • 63. STUDIES ON DEXTRANSUCRASE. I. FORMATION OF RIBOFLAVINYLGLUCOSIDE IN DESTRAN-PRODUCING CULTURES OF LEUCONOSTOC MESENTEROIDES.
    SUZUKI Y; KATAGIRI H
    J Vitaminol (Kyoto); 1963 Dec; 10():285-92. PubMed ID: 14167711
    [No Abstract]   [Full Text] [Related]  

  • 64. Dextransucrase secretion in Leuconostoc mesenteroides depends on the presence of a transmembrane proton gradient.
    Otts DR; Day DF
    J Bacteriol; 1988 Nov; 170(11):5006-11. PubMed ID: 2972694
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Aromatic interactions at the catalytic subsite of sucrose phosphorylase: their roles in enzymatic glucosyl transfer probed with Phe52→Ala and Phe52→Asn mutants.
    Wildberger P; Luley-Goedl C; Nidetzky B
    FEBS Lett; 2011 Feb; 585(3):499-504. PubMed ID: 21219904
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Asp-196-->Ala mutant of Leuconostoc mesenteroides sucrose phosphorylase exhibits altered stereochemical course and kinetic mechanism of glucosyl transfer to and from phosphate.
    Schwarz A; Nidetzky B
    FEBS Lett; 2006 Jul; 580(16):3905-10. PubMed ID: 16797542
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Designing of a novel dextransucrase efficient in synthesizing oligosaccharides.
    Li QP; Wang C; Zhang HB; Hu XQ; Li RH; Hua JH
    Int J Biol Macromol; 2017 Feb; 95():696-703. PubMed ID: 27919813
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of acceptor carbohydrates on oligosaccharide and polysaccharide synthesis by dextransucrase DsrM from Weissella cibaria.
    Hu Y; Winter V; Chen XY; Gänzle MG
    Food Res Int; 2017 Sep; 99(Pt 1):603-611. PubMed ID: 28784523
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Characterization of dextransucrase immobilized on calcium alginate beads from Leuconostoc mesenteroides PCSIR-4.
    Ul Qader SA; Aman A; Syed N; Bano S; Azhar A
    Ital J Biochem; 2007 Jun; 56(2):158-62. PubMed ID: 17722657
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Rapid filter paper assay for the dextransucrase activity from Streptococcus mutans.
    Germaine GR; Schachtele CF; Chludzinski AM
    J Dent Res; 1974; 53(6):1355-60. PubMed ID: 4529925
    [No Abstract]   [Full Text] [Related]  

  • 71. Identification of a single and non-essential cysteine residue in dextransucrase of Leuconostoc mesenteroides NRRL B-512F.
    Goyal A; Tyagi DP; Katiyar SS
    J Enzyme Inhib Med Chem; 2007 Feb; 22(1):111-3. PubMed ID: 17373556
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A novel approach to the production of clinical-grade dextran.
    Barker PE; Ganetsos G; Ajongwen NJ
    J Chem Technol Biotechnol; 1993; 57(1):21-6. PubMed ID: 7686012
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mechanisms of biopolymer growth: the formation of dextran and levan.
    Ebert KH; Schenk G
    Adv Enzymol Relat Areas Mol Biol; 1968; 30():179-221. PubMed ID: 4872298
    [No Abstract]   [Full Text] [Related]  

  • 74. A D-glucosylated form of dextransucrase: demonstration of partial reactions.
    Luzio GA; Parnaik VK; Mayer RM
    Carbohydr Res; 1983 Sep; 121():269-78. PubMed ID: 6230151
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Heterogeneous expression, molecular modification of amylosucrase from Neisseria polysaccharea, and its application in the preparation of turanose.
    Su L; Zhao Y; Wu D; Wu J
    Food Chem; 2020 Jun; 314():126212. PubMed ID: 31972410
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Development of a high-throughput screening method for recombinant Escherichia coli with intracellular dextransucrase activity.
    Lee SR; Yi AR; Lee HG; Jang MU; Park JM; Han NS; Kim TJ
    J Microbiol; 2011 Apr; 49(2):320-3. PubMed ID: 21538258
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Structural characteristics of native and enzymically formed dextran of S. sanguis ATCC 10558.
    Arnett AT; Mayer RM
    Carbohydr Res; 1975 Jul; 42(2):339-45. PubMed ID: 1139563
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The scope of interanomeric glycosyl transfer reactions: hetero-dialdoside synthesis by enzymic glucosylation of D-galactose and D-mannose.
    Iriki Y; Hehre EJ
    Arch Biochem Biophys; 1969 Oct; 134(1):130-8. PubMed ID: 4310626
    [No Abstract]   [Full Text] [Related]  

  • 79. Influence of gamma-irradiation on UDPglucose-fructose glucosyltransferase in potato tubers.
    Jaarma M
    Acta Chem Scand; 1966; 20(2):594-6. PubMed ID: 5941315
    [No Abstract]   [Full Text] [Related]  

  • 80. Allosteric regulation of uridine diphosphoglucose: D-fructose-6-phosphate-2-glucosyl transferase (E.C.2.4.1.14).
    Preiss J; Greenberg E
    Biochem Biophys Res Commun; 1969 Jul; 36(2):289-95. PubMed ID: 5799647
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.