These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 5953534)

  • 1. [Biological acid degradation in wine. II. The regulation of maleic acid degradation in grape wine by addition of tartaric acid and sugar].
    Wejnar R
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1966; 120(2):132-40. PubMed ID: 5953534
    [No Abstract]   [Full Text] [Related]  

  • 2. [The biological acid degradation in wine. I. On the question of stability of organic acids in relation to microorganisms in wine].
    Wejnar R
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1966; 120(2):123-31. PubMed ID: 5953533
    [No Abstract]   [Full Text] [Related]  

  • 3. [Biological acid-degradation in wine. VI. Control of the degradation of malic acid with pure-cultures of bacteria].
    Wejnar R
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1971; 126(6):575-9. PubMed ID: 5172503
    [No Abstract]   [Full Text] [Related]  

  • 4. Iron(III) tartrate as a potential precursor of light-induced oxidative degradation of white wine: studies in a model wine system.
    Clark AC; Dias DA; Smith TA; Ghiggino KP; Scollary GR
    J Agric Food Chem; 2011 Apr; 59(8):3575-81. PubMed ID: 21381783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Urinary tartaric acid as a potential biomarker for the dietary assessment of moderate wine consumption: a randomised controlled trial.
    Regueiro J; Vallverdú-Queralt A; Simal-Gándara J; Estruch R; Lamuela-Raventós RM
    Br J Nutr; 2014 May; 111(9):1680-5. PubMed ID: 24507823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of oenological products: discrimination between different botanical sources of L-tartaric acid by isotope ratio mass spectrometry.
    Moreno Rojas JM; Cosofret S; Reniero F; Guillou C; Serra F
    Rapid Commun Mass Spectrom; 2007; 21(15):2447-50. PubMed ID: 17610238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Analytical evidences of sugar added to wine].
    Dupuy P
    Ann Nutr Aliment; 1978; 32(5):1123-32. PubMed ID: 754584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Influence of malic and tartaric acid as well as of vitamin B 1 on glycerol production during alcoholic fermentation].
    Liebert HP
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1971; 126(2):162-70. PubMed ID: 5172310
    [No Abstract]   [Full Text] [Related]  

  • 9. The comparative chronic toxicities of fumaric, tartaric, oxalic, and maleic acids.
    FITZHUGH OG; NELSON AA
    J Am Pharm Assoc Am Pharm Assoc; 1947 Jul; 36(7):217-9. PubMed ID: 20252802
    [No Abstract]   [Full Text] [Related]  

  • 10. White wine phenolics are absorbed and extensively metabolized in humans.
    Nardini M; Forte M; Vrhovsek U; Mattivi F; Viola R; Scaccini C
    J Agric Food Chem; 2009 Apr; 57(7):2711-8. PubMed ID: 19334754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Biological acid-degradation in wine. VII. Short representation of some research-aspects].
    Wejnar R
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1971; 126(6):580-4. PubMed ID: 5172504
    [No Abstract]   [Full Text] [Related]  

  • 12. [Use of maleic acid by mixed cultures of microorganisms].
    Safronova IIu; Semenova EV
    Prikl Biokhim Mikrobiol; 2002; 38(4):401-4. PubMed ID: 12325296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of tartaric and malic acids in wine oxidation.
    Danilewicz JC
    J Agric Food Chem; 2014 Jun; 62(22):5149-55. PubMed ID: 24809227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tartaric acid recovery from distilled lees and use of the residual solid as an economic nutrient for lactobacillus.
    Rivas B; Torrado A; Moldes AB; Domínguez JM
    J Agric Food Chem; 2006 Oct; 54(20):7904-11. PubMed ID: 17002469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A lytic enzyme cocktail from Streptomyces sp. B578 for the control of lactic and acetic acid bacteria in wine.
    Blättel V; Wirth K; Claus H; Schlott B; Pfeiffer P; König H
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):839-48. PubMed ID: 19277643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetic acid bacteria spoilage of bottled red wine -- a review.
    Bartowsky EJ; Henschke PA
    Int J Food Microbiol; 2008 Jun; 125(1):60-70. PubMed ID: 18237809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of lactic acid bacteria producing biogenic amines in wine by quantitative PCR methods.
    Nannelli F; Claisse O; Gindreau E; de Revel G; Lonvaud-Funel A; Lucas PM
    Lett Appl Microbiol; 2008 Dec; 47(6):594-9. PubMed ID: 19120932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of molecular methods to demonstrate species and strain evolution of acetic acid bacteria population during wine production.
    González A; Hierro N; Poblet M; Mas A; Guillamón JM
    Int J Food Microbiol; 2005 Jul; 102(3):295-304. PubMed ID: 16014297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Oxidation of tartaric acid in wine in the presence of heavy metal salts (activation of oxygen by iron)].
    RODOPULO AK
    Izv Akad Nauk SSSR Biol; 1951; 3():115-28. PubMed ID: 14840968
    [No Abstract]   [Full Text] [Related]  

  • 20. 13C and 18O isotopic analysis to determine the origin of L-tartaric acid.
    Serra F; Reniero F; Guillou CG; Moreno JM; Marinas JM; Vanhaecke F
    Rapid Commun Mass Spectrom; 2005; 19(10):1227-30. PubMed ID: 15838929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.