These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 5954870)
1. Inhibition of leaf process by p-fluorophenylalanine during induction of flowering in the cocklebur. Miller J; Ross C Plant Physiol; 1966 Sep; 41(7):1185-92. PubMed ID: 5954870 [TBL] [Abstract][Full Text] [Related]
2. Induction of capsular polysaccharide synthesis by rho-fluorophenylalanine in Escherichia coli wild type and strains with altered phenylalanyl soluble ribonucleic acid synthetase. Kang S; Markovitz A J Bacteriol; 1967 Feb; 93(2):584-91. PubMed ID: 5335965 [TBL] [Abstract][Full Text] [Related]
3. Genetical and biochemical aspects of resistance to p-fluorophenylalanine in Saccharomyces cerevisiae. Rhodes PM; Wilkie D J Gen Microbiol; 1975 Dec; 91(2):217-24. PubMed ID: 1107471 [TBL] [Abstract][Full Text] [Related]
4. Iron content and ferritin in leaves of iron treated Xanthium pensylvanicum plants. Seekbach J Plant Physiol; 1969 Jun; 44(6):816-20. PubMed ID: 5799045 [TBL] [Abstract][Full Text] [Related]
7. Induction of phenylalanine ammonia-lyase in Xanthium leaf disks. Photosynthetic requirement and effect of daylength. Zucker M Plant Physiol; 1969 Jun; 44(6):912-22. PubMed ID: 5799052 [TBL] [Abstract][Full Text] [Related]
8. Biosynthesis of phytoquinones. Biosynthetic origins of the nuclei and satellite methyl groups of plastoquinone, tocopherols and tocopherolquinones in maize shoots, bean shoots and ivy leaves. Whistance GR; Threlfall DR Biochem J; 1968 Oct; 109(4):577-95. PubMed ID: 5683508 [TBL] [Abstract][Full Text] [Related]
9. Membrane alteration and the formation of metachromatic granules in Escherichia coli treated with p-fluorophenylalanine. Brostrom MA; Binkley SB J Bacteriol; 1969 Jun; 98(3):1263-70. PubMed ID: 4892374 [TBL] [Abstract][Full Text] [Related]
10. Evidence that p-fluorophenylalanine has a direct effect on tubulin in Aspergillus nidulans. Morris NR; Oakley CE J Gen Microbiol; 1979 Oct; 114(2):449-54. PubMed ID: 396355 [TBL] [Abstract][Full Text] [Related]
11. Age at flowering differentially affects vegetative and reproductive responses of a determinate annual plant to elevated carbon dioxide. Lewis JD; Wang X; Griffin KL; Tissue DT Oecologia; 2003 Apr; 135(2):194-201. PubMed ID: 12698340 [TBL] [Abstract][Full Text] [Related]
12. Metabolism of Mevalonic Acid in Vegetative and Induced Plants of Xanthium strumarium. Bledsoe CS Plant Physiol; 1978 Nov; 62(5):683-6. PubMed ID: 16660583 [TBL] [Abstract][Full Text] [Related]
13. Twilight effect: initiating dark measurement in photoperiodism of xanthium. Salisbury FB Plant Physiol; 1981 Jun; 67(6):1230-8. PubMed ID: 16661842 [TBL] [Abstract][Full Text] [Related]
14. FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Schomburg FM; Patton DA; Meinke DW; Amasino RM Plant Cell; 2001 Jun; 13(6):1427-36. PubMed ID: 11402170 [TBL] [Abstract][Full Text] [Related]
15. Growth schedule of Xanthium canadense: Does it optimize the timing of reproduction? Sugiyama H; Hirose T Oecologia; 1991 Sep; 88(1):55-60. PubMed ID: 28312731 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms and function of flower and inflorescence reversion. Tooke F; Ordidge M; Chiurugwi T; Battey N J Exp Bot; 2005 Oct; 56(420):2587-99. PubMed ID: 16131510 [TBL] [Abstract][Full Text] [Related]
17. Translocation patterns in xanthium in relation to long day inhibition of flowering. Zeevaart JA; Brede JM; Cetas CB Plant Physiol; 1977 Nov; 60(5):747-53. PubMed ID: 16660177 [TBL] [Abstract][Full Text] [Related]
18. Timing of seed germination and the reproductive effort in Xanthium canadense. Shitaka Y; Hirose T Oecologia; 1993 Sep; 95(3):334-339. PubMed ID: 28314007 [TBL] [Abstract][Full Text] [Related]