These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
67 related articles for article (PubMed ID: 596059)
1. The role of red cell membrane in the regulation of glycolysis and the 2,3-bisphosphoglycerate-cycle. Arese P; Bosia A; Pescarmona GP; Till U Acta Biol Med Ger; 1977; 36(3-4):481-90. PubMed ID: 596059 [TBL] [Abstract][Full Text] [Related]
2. Accumulation of phosphate esters and decline of ATP in red cells incubated in vitro is caused by lack of pyruvate. Rapoport I; Rapoport S; Elsner R Acta Biol Med Ger; 1981; 40(2):115-21. PubMed ID: 7269982 [TBL] [Abstract][Full Text] [Related]
3. [The effect of inosine, inorganic phosphates and pyruvate on erythrocyte glycolysis metabolites under conditions of preservation]. Hasart E; Roigas H; Roth W Folia Haematol Int Mag Klin Morphol Blutforsch; 1976; 103(4):559-72. PubMed ID: 64396 [TBL] [Abstract][Full Text] [Related]
4. Bovine post-parturient haemoglobinuria: effect of inorganic phosphate on red cell metabolism. Wang XL; Gallagher CH; McClure TJ; Reeve VE; Canfield PJ Res Vet Sci; 1985 Nov; 39(3):333-9. PubMed ID: 4081339 [TBL] [Abstract][Full Text] [Related]
5. Oxypurine cycle in human erythrocytes regulated by pH, inorganic phosphate, and oxygen. Berman PA; Black DA; Human L; Harley EH J Clin Invest; 1988 Sep; 82(3):980-6. PubMed ID: 2458389 [TBL] [Abstract][Full Text] [Related]
6. Regulation of glycolysis in human erythrocytes. The mechanism of ATP concentration stabilization. Ataullakhanov FI; Vitvitsky VM; Zhabotinsky AM; Pichugin AV; Kholodenko BN; Ehrlich LI Acta Biol Med Ger; 1981; 40(7-8):991-7. PubMed ID: 7331640 [TBL] [Abstract][Full Text] [Related]
7. Erythrocyte glycolysis, 2,3-diphosphoglycerate and adenosine triphosphate concentration in uremic subjects: relationship to extracellular phosphate concentration. Lichtman MA; Miller DR J Lab Clin Med; 1970 Aug; 76(2):267-79. PubMed ID: 5434006 [No Abstract] [Full Text] [Related]
8. The effect of inosine, pyruvate, and inorganic phosphate on 2,3-diphosphoglycerate, adenine, and hypoxanthine nucleotide synthesis in outdated human erythrocytes. Zachara B J Lab Clin Med; 1975 Mar; 85(3):436-44. PubMed ID: 1117206 [TBL] [Abstract][Full Text] [Related]
9. Interrelationship between energy metabolism from various substrates and the 2,3-bisphosphoglycerate bypass in human erythrocytes. Brand K; Quadflieg KH Acta Biol Med Ger; 1977; 36(3-4):507-13. PubMed ID: 596060 [TBL] [Abstract][Full Text] [Related]
10. Regulation of glycolysis in the erythrocyte: role of the lactate/pyruvate and NAD/NADH ratios. Tilton WM; Seaman C; Carriero D; Piomelli S J Lab Clin Med; 1991 Aug; 118(2):146-52. PubMed ID: 1856577 [TBL] [Abstract][Full Text] [Related]
11. Regeneration of 2,3-bisphosphoglycerate and ATP of stored erythrocytes by phosphoenolpyruvate; a new preservative for blood storage. Hamasaki N; Hirota C; Ideguchi H; Ikehara Y Prog Clin Biol Res; 1981; 55():577-94. PubMed ID: 7291198 [TBL] [Abstract][Full Text] [Related]
12. Orthophosphate transport in the erythrocyte of normal subjects and of patients with X-linked hypophosphatemia. Tenenhouse HS; Scriver CR J Clin Invest; 1975 Mar; 55(3):644-54. PubMed ID: 1117070 [TBL] [Abstract][Full Text] [Related]
13. [Influence of bicarbonate and inorganic phosphate on the 2,3-diphosphoglycerate and adenosine triphosphate contents of preserved erythrocytes]. Strauss D Z Med Lab Diagn; 1977 Dec; 18(6):331-6. PubMed ID: 607653 [No Abstract] [Full Text] [Related]
15. The effect of pyruvate on glycolysis and the maintenance of adenine nucleotides in red cells. Rapoport SM; Rapoport I; Schauer M; Heinrich R Acta Biol Med Ger; 1981; 40(4-5):669-76. PubMed ID: 6458987 [No Abstract] [Full Text] [Related]
16. The effects of calcium on glycolysis and ATP concentration in complete and membrane-poor hemolyzates of human erythrocytes. Brox D; Petermann B; Frunder H Acta Biol Med Ger; 1977; 36(5-6):611-9. PubMed ID: 414494 [TBL] [Abstract][Full Text] [Related]
17. Rejuvenation of aged erythrocytes by incorporating phosphoenolpyruvate into the cells. Hamasaki N; Minakami S; Ideguchi H; Ikehara Y Acta Biol Med Ger; 1981; 40(4-5):691-7. PubMed ID: 7315116 [TBL] [Abstract][Full Text] [Related]
18. Alterations of red-cell glycolytic intermediates and oxygen transport as a consequence of hypophosphatemia in patients receiving intravenous hyperalimentation. Travis SF; Sugerman HJ; Ruberg RL; Dudrick SJ; Delivoria-Papadopoulos M; Miller LD; Oski FA N Engl J Med; 1971 Sep; 285(14):763-8. PubMed ID: 4998555 [No Abstract] [Full Text] [Related]
19. Membrane phosphorylation in intact human erythrocytes. Reimann B; Klatt D; Tsamaloukas AG; Maretzki D Acta Biol Med Ger; 1981; 40(4-5):487-93. PubMed ID: 7315094 [TBL] [Abstract][Full Text] [Related]
20. Erythrocyte energy metabolism in hereditary spherocytosis. Reed CF; Young LE J Clin Invest; 1967 Jul; 46(7):1196-204. PubMed ID: 6027083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]