These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 5960892)
1. Application of partition coefficients, electric moments, electronic structures, and free-energy relationships to the interpretation of cholinesterase inhibition. Purcell WP; Beasley JG; Quintana RP; Singer JA J Med Chem; 1966 May; 9(3):297-303. PubMed ID: 5960892 [No Abstract] [Full Text] [Related]
2. ELECTRIC MOMENTS AND CHOLINESTERASE INHIBITORY PROPERTIES OF SELECTED N-ALKYL SUBSTITUTED AMIDES. PURCELL WP; BEASLEY JG; QUINTANA RP Biochim Biophys Acta; 1964 Jul; 88():233-5. PubMed ID: 14203159 [No Abstract] [Full Text] [Related]
3. Electronic structures of some N-alkyl-substituted amides of interest as cholinesterase inhibitors. Purcell WP J Med Chem; 1966 May; 9(3):294-7. PubMed ID: 5960891 [No Abstract] [Full Text] [Related]
4. Electronic factors in drug-receptor interactions. Martin YC J Med Chem; 1970 Jan; 13(1):145-7. PubMed ID: 5412093 [No Abstract] [Full Text] [Related]
8. The effect of piperidinecarboxamide derivatives on isolated human plasma cholinesterase. 3. Variation in the N-hydrocarbon substituent. Beasley JG; Williford LL J Med Chem; 1967 Jan; 10(1):76-8. PubMed ID: 6031706 [No Abstract] [Full Text] [Related]
9. QSAR of acetylchol inesterase inhibitors: a reexamination of the role of charge-transfer. Su CT; Lien EJ Res Commun Chem Pathol Pharmacol; 1980 Sep; 29(3):403-15. PubMed ID: 7423020 [TBL] [Abstract][Full Text] [Related]
10. A FREE-ELECTRON MODEL FOR KINETIC SUBSTITUENT EFFECTS. SWAIN CG; SCHOWEN RL J Org Chem; 1965 Feb; 30():615-7. PubMed ID: 14267304 [No Abstract] [Full Text] [Related]
11. Theoretical studies of the transition-state structures and free energy barriers for base-catalyzed hydrolysis of amides. Xiong Y; Zhan CG J Phys Chem A; 2006 Nov; 110(46):12644-52. PubMed ID: 17107116 [TBL] [Abstract][Full Text] [Related]
12. The use of molecular orbital calculations as an aid to correlate the structure and activity of cholinesterase inhibitors. Neely WB Mol Pharmacol; 1965 Sep; 1(2):137-44. PubMed ID: 5835694 [No Abstract] [Full Text] [Related]
13. [Structure-activity relationships of acetylcholinesterase inhibitors with carbamate structure]. Schmidt K; Michel H; Hiekel HG; Franke R; Barth A Pharmazie; 1977; 32(8-9):522-5. PubMed ID: 594120 [No Abstract] [Full Text] [Related]
14. Some relationships between chemical structure and pharmacological activities. Cavallito CJ Annu Rev Pharmacol; 1968; 8():39-66. PubMed ID: 4875397 [No Abstract] [Full Text] [Related]
16. The salting-out behavior of amides and its relation to the denaturation of proteins by salts. Schrier EE; Schrier EB J Phys Chem; 1967 May; 71(6):1851-60. PubMed ID: 6045721 [No Abstract] [Full Text] [Related]
17. Molecular orbital methods in the study of cholinesterase inhibitors. Cammarata A; Stein RL J Med Chem; 1968 Jul; 11(4):829-33. PubMed ID: 5671250 [No Abstract] [Full Text] [Related]
18. [Modern interpretation of the concept of aromatic character and its significance for drug research]. Varga E; NĂ¡dor K Arzneimittelforschung; 1968 Jun; 18(6):633-45. PubMed ID: 4885093 [No Abstract] [Full Text] [Related]
19. Kinetics of the carbamylation of cholinesterase. O'Brien RD Mol Pharmacol; 1968 Mar; 4(2):121-30. PubMed ID: 5689526 [No Abstract] [Full Text] [Related]
20. [Additional material on the electronic structure of biological ferroporphyrins]. Veillard A; Pullman B J Theor Biol; 1965 Mar; 8(2):317-26. PubMed ID: 5876242 [No Abstract] [Full Text] [Related] [Next] [New Search]