These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 596175)

  • 1. Localization of the disappearance of a light target during tracking eye movements. II.
    Mateeff S; Mitrani L; Yakimoff N
    Acta Physiol Pharmacol Bulg; 1977; 3(2):62-8. PubMed ID: 596175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of disappearance of a light target during tracking eye movements. I.
    Mateef S; Mitrani L; Yakimoff N
    Acta Physiol Pharmacol Bulg; 1977; 3(1):21-7. PubMed ID: 899803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of the change in intensity of a visually pursued light target.
    Mateeff S; Mitrani L
    Acta Physiol Pharmacol Bulg; 1979; 5(1):21-6. PubMed ID: 495131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of the start and the end point of a moving stimulus path during eye tracking.
    Mateeff S
    Acta Physiol Pharmacol Bulg; 1980; 6(1):18-25. PubMed ID: 7405590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual localization during eye tracking on steady background and during steady fixation on moving background.
    Mateeff S; Mitrani L; Stojanova J
    Biol Cybern; 1982; 42(3):215-9. PubMed ID: 7059623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of brief light stimuli on differently labelled reference patterns during smooth eye tracking.
    Mitrani L; Mateeff S
    Acta Physiol Pharmacol Bulg; 1981; 7(2):19-24. PubMed ID: 7315387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contrast and assimilation in motion perception and smooth pursuit eye movements.
    Spering M; Gegenfurtner KR
    J Neurophysiol; 2007 Sep; 98(3):1355-63. PubMed ID: 17634337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noise-enhanced target discrimination under the influence of fixational eye movements and external noise.
    Starzynski C; Engbert R
    Chaos; 2009 Mar; 19(1):015112. PubMed ID: 19335016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual readaptation after flash exposure under scotopic conditions. A study using optokinetic nystagmus as an indicator of visual perception.
    Wang L
    Acta Ophthalmol Suppl (1985); 1994; (212):1-50. PubMed ID: 8205058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binocular coordination in fore/aft motion.
    Ramat S; Zee DS
    Ann N Y Acad Sci; 2005 Apr; 1039():36-53. PubMed ID: 15826960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perception time and reaction time.
    Mitrani L; Gourevich A; Dimitrov G
    Acta Physiol Pharmacol Bulg; 1989; 15(3):38-42. PubMed ID: 2603739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auditory-visual coordination in neonates.
    McGurk H; Turnure C; Creighton
    Child Dev; 1977 Mar; 48(1):138-43. PubMed ID: 844352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual perception of movement patterns during smooth eye tracking.
    Mateeff S
    Acta Physiol Pharmacol Bulg; 1980; 6(3):82-9. PubMed ID: 7282385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ongoing eye movements constrain visual perception.
    Hafed ZM; Krauzlis RJ
    Nat Neurosci; 2006 Nov; 9(11):1449-57. PubMed ID: 17028586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking multiple targets with multifocal attention.
    Cavanagh P; Alvarez GA
    Trends Cogn Sci; 2005 Jul; 9(7):349-54. PubMed ID: 15953754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brief intermittent light stimulation disrupts saccadic oculomotor control.
    Alvarez TL; Beck KD; Ciuffreda KJ; Chua FB; Daftari A; DeMarco RM; Bergen MT; Servatius RJ
    Ophthalmic Physiol Opt; 2008 Jul; 28(4):354-64. PubMed ID: 18565091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fixational eye movements in normal and pathological vision.
    Martinez-Conde S
    Prog Brain Res; 2006; 154():151-76. PubMed ID: 17010709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of "blind" distractors on eye movement trajectories in visual hemifield defects.
    Van der Stigchel S; van Zoest W; Theeuwes J; Barton JJ
    J Cogn Neurosci; 2008 Nov; 20(11):2025-36. PubMed ID: 18416675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Right visual field advantage in parafoveal processing: evidence from eye-fixation-related potentials.
    Simola J; Holmqvist K; Lindgren M
    Brain Lang; 2009 Nov; 111(2):101-13. PubMed ID: 19782390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of V5 (hMT+) in visually guided hand movements: an fMRI study.
    Oreja-Guevara C; Kleiser R; Paulus W; Kruse W; Seitz RJ; Hoffmann KP
    Eur J Neurosci; 2004 Jun; 19(11):3113-20. PubMed ID: 15182320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.