These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 5963009)

  • 1. The mechanism of alpha-oxidation in leaves.
    Hitchcock C; James AT
    Biochim Biophys Acta; 1966 Jun; 116(3):413-24. PubMed ID: 5963009
    [No Abstract]   [Full Text] [Related]  

  • 2. The stereochemistry of alpha-oxidation of fatty acids in plants. Isotope competition experiments.
    Hitchcock C; Morris LJ; James AT
    Eur J Biochem; 1968 Feb; 3(4):419-21. PubMed ID: 5642452
    [No Abstract]   [Full Text] [Related]  

  • 3. The stereochemistry of alpha-oxidation of fatty acids in leaves. The formation of carbonyl intermediates.
    Hitchcock CH; Morris LJ
    Eur J Biochem; 1970 Nov; 17(1):39-42. PubMed ID: 5486582
    [No Abstract]   [Full Text] [Related]  

  • 4. Metabolism of rat-liver cell suspensions. 2. Fatty acid oxidation and ketone bodies.
    Exton JH
    Biochem J; 1964 Sep; 92(3):467-72. PubMed ID: 5891193
    [No Abstract]   [Full Text] [Related]  

  • 5. [A new pathway for oleic acid biosynthesis in plants].
    Mazliak P; Decotte AM
    Biochimie; 1973; 55(11):1481-9. PubMed ID: 4790853
    [No Abstract]   [Full Text] [Related]  

  • 6. The stereochemistry of alpha-oxidation of fatty acids in plants. The configuration of biosynthetic long-chain 2-hydroxyacids.
    Hitchcock C; Morris LJ; James AT
    Eur J Biochem; 1968 Feb; 3(4):473-5. PubMed ID: 5642455
    [No Abstract]   [Full Text] [Related]  

  • 7. Metabolism of 1c14 octanoic and 1c14 palmitic acid by rat intestinal slices.
    Greenberger NJ; Franks JJ; Isselbacher KJ
    Proc Soc Exp Biol Med; 1965 Nov; 120(2):468-72. PubMed ID: 5856428
    [No Abstract]   [Full Text] [Related]  

  • 8. Fat metabolism in higher plants. LXII. The pathway of ricinoleic acid catabolism in the germinating castor bean (Ricinus communis L.) and pea (Pisum sativum L.).
    Hutton D; Stumpf PK
    Arch Biochem Biophys; 1971 Jan; 142(1):48-60. PubMed ID: 5545491
    [No Abstract]   [Full Text] [Related]  

  • 9. Triricinolein synthesis in vivo.
    Watson WC; Murray ES
    Biochim Biophys Acta; 1965 Oct; 106(2):311-4. PubMed ID: 5867691
    [No Abstract]   [Full Text] [Related]  

  • 10. The stereochemistry of alpha-oxidation of fatty acids in plants. The stereochemistry of biosynthesis of long-chain 2-hydroxyacids.
    Morris LJ; Hitchcock C
    Eur J Biochem; 1968 Apr; 4(2):146-8. PubMed ID: 5655491
    [No Abstract]   [Full Text] [Related]  

  • 11. Factors controlling the rate of fatty acid -oxidation in rat liver mitochondria.
    Bremer J; Wojtczak AB
    Biochim Biophys Acta; 1972 Dec; 280(4):515-30. PubMed ID: 4346248
    [No Abstract]   [Full Text] [Related]  

  • 12. -oxidation of long-chain fatty acids in cell-free extracts of arthrobacter simplex.
    Yano I; Furukawa Y; Kusunose M
    Biochim Biophys Acta; 1971 Sep; 239(3):513-6. PubMed ID: 5113508
    [No Abstract]   [Full Text] [Related]  

  • 13. The stereochemistry of alpha-oxidation of fatty acids in plants: the configuration of biosynthetic long-chain 2-hydroxy acids.
    Hitchcock C; Rose A
    Biochem J; 1971 Dec; 125(4):1155-6. PubMed ID: 5144236
    [No Abstract]   [Full Text] [Related]  

  • 14. [Metabolic future of 14C-linoleic and palmitic acids in the growing rat. II. Retention and derivatives].
    Pascaud M; Strouvé C
    Bull Soc Chim Biol (Paris); 1968; 50(3):579-89. PubMed ID: 5668592
    [No Abstract]   [Full Text] [Related]  

  • 15. alpha-Hydroxylation of newly synthesised fatty acids by a soluble fraction from germinating pea.
    Jordan BR; Harwood JL
    Biochim Biophys Acta; 1979 Apr; 573(1):218-21. PubMed ID: 454636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of red-cell lipids. I. Incorporation in vitro of fatty acids into phospholipids from mature erythrocytes.
    Mulder E; van Deenen LL
    Biochim Biophys Acta; 1965 Jul; 106(1):106-17. PubMed ID: 5848255
    [No Abstract]   [Full Text] [Related]  

  • 17. Role of fatty acids in iodide-complexing lecithin.
    Vilkki P; Jaakonmäki I
    Endocrinology; 1966 Mar; 78(3):453-9. PubMed ID: 5931630
    [No Abstract]   [Full Text] [Related]  

  • 18. Identification of 16-oxo-9-hydroxy hexadecanoic acid, a novel monomer, as a major component of the biopolymer cutin in embryonic Vicia faba.
    Kolattukudy PE
    Biochem Biophys Res Commun; 1972 Nov; 49(4):1040-6. PubMed ID: 4641703
    [No Abstract]   [Full Text] [Related]  

  • 19. The fatty acid metabolism of Chlorella vulgaris.
    Harris RV; James AT
    Biochim Biophys Acta; 1965 Dec; 106(3):465-73. PubMed ID: 5881329
    [No Abstract]   [Full Text] [Related]  

  • 20. Biosynthesis of wax in Brassica oleracea. Relation of fatty acids to wax.
    Kolattukudy PE
    Biochemistry; 1966 Jul; 5(7):2265-75. PubMed ID: 5959450
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.