These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 5964051)
1. Bayesian comparison of means of a mixed model with application to regression analysis. Tiao GC Biometrika; 1966 Jun; 53(1):11-25. PubMed ID: 5964051 [No Abstract] [Full Text] [Related]
2. Bayesian analysis of a three-component hierarchical design model. Tiao GC; Box GE Biometrika; 1967 Jun; 54(1):109-25. PubMed ID: 6049528 [No Abstract] [Full Text] [Related]
3. A probability model for number of births and its application in estimation of fecundability for a heterogeneous population. Bhattacharya BN; Nath DC Janasamkhya; 1983 Dec; 1(2):163-71. PubMed ID: 12312912 [TBL] [Abstract][Full Text] [Related]
4. Unlimited simultaneous discrimination intervals in regression. Lieberman GJ; Miller RG; Hamilton MA Biometrika; 1967 Jun; 54(1):133-45. PubMed ID: 6049530 [No Abstract] [Full Text] [Related]
5. Some probability models for ascertainment of families in segregation analysis. Sharma HL Janasamkhya; 1985; 3(1-2):97-102. PubMed ID: 12340879 [TBL] [Abstract][Full Text] [Related]
6. [Meta-analysis of the Italian studies on short-term effects of air pollution]. Biggeri A; Bellini P; Terracini B; Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188 [TBL] [Abstract][Full Text] [Related]
7. A modified probability model for out-migration. Ojha VP; Pandey H Janasamkhya; 1991 Jun; 9(1-2):75-81. PubMed ID: 12287693 [TBL] [Abstract][Full Text] [Related]
8. On some probability models and their applications to the distribution of the number of migrants from a household. Yadava KN; Yadava GS Janasamkhya; 1988 Dec; 6(2):137-58. PubMed ID: 12282254 [TBL] [Abstract][Full Text] [Related]
9. A probability model for the number of migrants. Yadava KN; Singh SK; Kumar U Janasamkhya; 1989 Dec; 7(2):83-92. PubMed ID: 12316276 [TBL] [Abstract][Full Text] [Related]
10. On a probability distribution to study the open birth interval and its application. Mishra RN; Singh KK; Dwivedi SN Janasamkhya; 1986 Jun; 4(1):29-40. PubMed ID: 12341004 [TBL] [Abstract][Full Text] [Related]
11. [Some probability models of rural hill migrants in India]. Pandey H Demografie; 1994; 36(4):258-61. PubMed ID: 12319423 [TBL] [Abstract][Full Text] [Related]
12. Testing the proportional hazards regression model against some general alternatives. O'Quigley J; Moreau T Rev Epidemiol Sante Publique; 1984; 32(3-4):199-205. PubMed ID: 6522734 [TBL] [Abstract][Full Text] [Related]
13. [A prospective analysis of fertility based on the Willis model]. Siegers JJ Maandstat Bevolking; 1988 Feb; 36(2):12-21. PubMed ID: 12315205 [TBL] [Abstract][Full Text] [Related]
14. On human outmigration model. Pandey H Janasamkhya; 1993 Dec; 11(2):123-7. PubMed ID: 12292836 [TBL] [Abstract][Full Text] [Related]
15. Application of the Brass-Sullivan method to historical data. Matthiessen P Popul Index; 1972; 38(4):403-9. PubMed ID: 12229693 [No Abstract] [Full Text] [Related]
16. Hierarchical logistic regression models for imputation of unresolved enumeration status in undercount estimation. Belin TR; Diffendal GJ; Mack S; Rubin DB; Schafer JL; Zaslavsky AM J Am Stat Assoc; 1993 Sep; 88(423):1,149-66. PubMed ID: 12155420 [TBL] [Abstract][Full Text] [Related]
17. [A stochastic model for the study of internal migration]. Siqueira I Rev Bras Estat; 1980; 41(164):485-97. PubMed ID: 12313163 [No Abstract] [Full Text] [Related]
18. Bayesian nonparametric estimation of continuous monotone functions with applications to dose-response analysis. Bornkamp B; Ickstadt K Biometrics; 2009 Mar; 65(1):198-205. PubMed ID: 18510655 [TBL] [Abstract][Full Text] [Related]
19. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Huelsenbeck J; Rannala B Syst Biol; 2004 Dec; 53(6):904-13. PubMed ID: 15764559 [TBL] [Abstract][Full Text] [Related]
20. Bayesian model comparison of nonlinear structural equation models with missing continuous and ordinal categorical data. Lee SY; Song XY Br J Math Stat Psychol; 2004 May; 57(Pt 1):131-50. PubMed ID: 15171804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]