BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 5966286)

  • 1. The interconversion of glycine and serine by plant tissue extracts.
    Cossins EA; Sinha SK
    Biochem J; 1966 Nov; 101(2):542-9. PubMed ID: 5966286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of formaldehyde in direct formation of glycine and serine in bean leaves.
    Nosticzius A
    Acta Biol Hung; 1998; 49(2-4):193-9. PubMed ID: 10526961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The formation of serine from glycine and formaldehyde by cell free extracts of Clostridium acidi-urici.
    Hougland AE; Beck JV
    Microbios; 1979; 24(97-98):151-7. PubMed ID: 119132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactions of glycine synthesis and glycine cleavage catalyzed by extracts of Arthrobacter globiformis grown on glycine.
    Kochi H; Kikuchi G
    Arch Biochem Biophys; 1969 Jul; 132(2):359-69. PubMed ID: 4389630
    [No Abstract]   [Full Text] [Related]  

  • 5. Adenosine triphosphate synthesis and the natural electron acceptor for synthesis of serine from glycine in leaves.
    Bird IF; Cornelius MJ; Keys AJ; Whittingham CP
    Biochem J; 1972 Jun; 128(1):191-2. PubMed ID: 5085565
    [No Abstract]   [Full Text] [Related]  

  • 6. A study of the mechanism of serine biosynthesis.
    KISLIUK RL; SAKAMI W
    J Biol Chem; 1955 May; 214(1):47-57. PubMed ID: 14367362
    [No Abstract]   [Full Text] [Related]  

  • 7. THE IMPORTANCE OF GLYOXYLATE IN AMINO ACID BIOSYNTHESIS IN PLANTS.
    SINHA SK; COSSINS EA
    Biochem J; 1965 Jul; 96(1):254-61. PubMed ID: 14343140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The utilization of carbon-1 compounds by plants. II. The formation and metabolism of formate by higher plant tissues.
    Cossins EA; Sinha SK
    Can J Biochem; 1965 Jun; 43(6):685-98. PubMed ID: 5839207
    [No Abstract]   [Full Text] [Related]  

  • 9. Serine transhydroxymethylase in developing mouse brain.
    Bridgers WF
    J Neurochem; 1968 Nov; 15(11):1325-8. PubMed ID: 5707421
    [No Abstract]   [Full Text] [Related]  

  • 10. Modulation of glycine-serine interconversion by TCA and glycolytic intermediates in normoxic and hypoxic proximal tubules.
    Cowin GJ; Willgoss DA; Endre ZH
    Biochim Biophys Acta; 1996 Jan; 1310(1):41-7. PubMed ID: 9244173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of 1-14C glyoxylate, 1-14C glycollate, 1-14C glycine and 2-14C glycine by homogenates of kidney and liver tissue from hyperoxaluric and control subjects.
    Dean BM; Watts RW; Westwick WJ
    Biochem J; 1967 Nov; 105(2):701-7. PubMed ID: 5584012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significance of the glycine cleavage system in glycine and serine catabolism in avian liver.
    Yoshida T; Kikuchi G
    Arch Biochem Biophys; 1971 Aug; 145(2):658-68. PubMed ID: 4108152
    [No Abstract]   [Full Text] [Related]  

  • 13. Serine isotopmer analysis by 13C-NMR defines glycine-serine interconversion in situ in the renal proximal tubule.
    Cowin GJ; Willgoss DA; Bartley J; Endre ZH
    Biochim Biophys Acta; 1996 Jan; 1310(1):32-40. PubMed ID: 9244172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. STUDIES ON WHEAT PLANTS USING CARBON-14 COMPOUNDS. XXI. THE METABOLISM OF GLYCINE-2-C14.
    MCCONNELL WB
    Can J Biochem; 1964 Sep; 42():1293-9. PubMed ID: 14217235
    [No Abstract]   [Full Text] [Related]  

  • 15. Genetic and physiological control of serine and glycine biosynthesis in Saccharomyces.
    Ulane R; Ogur M
    J Bacteriol; 1972 Jan; 109(1):34-43. PubMed ID: 4333378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of one-carbon precursors in the biosynthesis of deoxyribonucleic acid in bacteriophage infected and growing cells of Escherichia coli.
    NESTER EW; SPIZIZEN J
    J Bacteriol; 1961 Dec; 82(6):867-74. PubMed ID: 14479081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspects of glycine and serine biosynthesis during growth of Pseudomonas AM1 on C compounds.
    Harder W; Quayle JR
    Biochem J; 1971 Mar; 121(5):763-9. PubMed ID: 5113490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic, inhibitory and stereochemical studies on cytoplasmic and mitochondrial serine transhydorxymethylases.
    Akhtar M; El-Obeid HA; Jordan PM
    Biochem J; 1975 Feb; 145(2):159-68. PubMed ID: 1156355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycine turnover and decarboxylation rate quantified in healthy men and women using primed, constant infusions of [1,2-(13)C2]glycine and [(2)H3]leucine.
    Lamers Y; Williamson J; Gilbert LR; Stacpoole PW; Gregory JF
    J Nutr; 2007 Dec; 137(12):2647-52. PubMed ID: 18029478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization and interconversion of tetrahydropteroylglutamates in isolated pea mitochondria.
    Clandinin MT; Cossins EA
    Biochem J; 1972 Jun; 128(1):29-40. PubMed ID: 4628623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.