These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 596868)

  • 1. Effect of growth substrate on thermal death of thermophilic bacteria.
    Merkel GJ; Perry JJ
    Appl Environ Microbiol; 1977 Dec; 34(6):626-9. PubMed ID: 596868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phospholipid composition and heat sensitivity in a thermophilic bacterium.
    Merkel GJ; Perry JJ
    Biochim Biophys Acta; 1980 Jul; 619(1):68-75. PubMed ID: 7417470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of substrate on the fatty acid composition of hydrocarbon-utilizing filamentous fungi.
    Cerniglia CE; Perry JJ
    J Bacteriol; 1974 Jun; 118(3):844-7. PubMed ID: 4829928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial assimilation of hydrocarbons: cellular distribution of fatty acids.
    Makula RA; Finnerty WR
    J Bacteriol; 1972 Oct; 112(1):398-407. PubMed ID: 5079069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid composition of lipid extracts of a thermophilic Bacillus species.
    Daron HH
    J Bacteriol; 1970 Jan; 101(1):145-51. PubMed ID: 5411749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of fatty acid biosynthesis by hydrocarbon substrates in Mycobacterium convolutum.
    Ascenzi JM; Vestal JR
    J Bacteriol; 1979 Jan; 137(1):384-90. PubMed ID: 33151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Omega-cyclohexyl fatty acids in acidophilic thermophilic bacteria. Studies on their presence, structure, and biosynthesis using precursors labeled with stable isotopes and radioisotopes.
    Oshima M; Ariga T
    J Biol Chem; 1975 Sep; 250(17):6963-8. PubMed ID: 1158890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatty acid composition of Cladosporium resinae grown on glucose and on hydrocarbons.
    Cooney JJ; Proby CM
    J Bacteriol; 1971 Nov; 108(2):777-81. PubMed ID: 5166858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of chlorinated alkanes into fatty acids of hydrocarbon-utilizing mycobacteria.
    Murphy GL; Perry JJ
    J Bacteriol; 1983 Dec; 156(3):1158-64. PubMed ID: 6643390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of substrate on the fatty acid composition of hydrocabon-utilizing microorganisms.
    Dunlap KR; Perry JJ
    J Bacteriol; 1967 Dec; 94(6):1919-23. PubMed ID: 6074400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The origin of fatty acids in the hydrocarbon-utilizing microorganism Mycobacterium vaccae.
    King DH; Perry JJ
    Can J Microbiol; 1975 Jan; 21(1):85-9. PubMed ID: 1116040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial cell production from hexadecane at high temperatures.
    Sukatsch DA; Johnson MJ
    Appl Microbiol; 1972 Mar; 23(3):543-6. PubMed ID: 5021971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The growth of thermophilic fungi strains Aspergillus fumigatus and Mucor lusitanicus in n-alkane medium (author's transl)].
    Voigt A; Bemmann W; Tröger R
    Zentralbl Bakteriol Naturwiss; 1981; 136(7):590-602. PubMed ID: 7034398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutritional alteration of the fatty acid composition of a thermophilic Bacillus species.
    Daron HH
    J Bacteriol; 1973 Dec; 116(3):1096-9. PubMed ID: 4752936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions.
    Aeckersberg F; Rainey FA; Widdel F
    Arch Microbiol; 1998 Oct; 170(5):361-9. PubMed ID: 9818355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. YATP value in Candida tropicalis grown on n-alkanes, fatty acids, and acetate.
    Gallo M; Azoulay E
    Biotechnol Bioeng; 1975 Dec; 17(12):1705-15. PubMed ID: 1203460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extremely thermophilic gram-negative bacteria from hot tap water.
    Pask-Hughes R; Williams RA
    J Gen Microbiol; 1975 Jun; 88(2):321-8. PubMed ID: 1097586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1.
    Sokolovská I; Rozenberg R; Riez C; Rouxhet PG; Agathos SN; Wattiau P
    Appl Environ Microbiol; 2003 Dec; 69(12):7019-27. PubMed ID: 14660344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial community growth and utilization of carbon constituents during thermophilic composting at different oxygen levels.
    Steger K; Eklind Y; Olsson J; Sundh I
    Microb Ecol; 2005 Aug; 50(2):163-71. PubMed ID: 16184337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bile resistance in Lactococcus lactis strains varies with cellular fatty acid composition: analysis by using different growth media.
    Kimoto-Nira H; Kobayashi M; Nomura M; Sasaki K; Suzuki C
    Int J Food Microbiol; 2009 May; 131(2-3):183-8. PubMed ID: 19339076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.