These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 596994)

  • 1. Electron microscopic investigation of the hydrogen-oxidizing acetate-forming anaerobic bacterium Acetobacterium woodii.
    Mayer F; Lurz R; Schoberth S
    Arch Microbiol; 1977 Nov; 115(2):207-13. PubMed ID: 596994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel requirement of Acetobacterium woodii.
    Diekert G; Ritter M
    J Bacteriol; 1982 Aug; 151(2):1043-5. PubMed ID: 6807954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of molecular hydrogen and carbon dioxide on chemo-organotrophic growth of Acetobacterium woodii and Clostridium aceticum.
    Braun K; Gottschalk G
    Arch Microbiol; 1981 Jan; 128(3):294-8. PubMed ID: 6783002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimisation of continuous gas fermentation by immobilisation of acetate-producing Acetobacterium woodii.
    Steger F; Rachbauer L; Windhagauer M; Montgomery LFR; Bochmann G
    Anaerobe; 2017 Aug; 46():96-103. PubMed ID: 28648471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel way to utilize hydrogen and carbon dioxide in acidogenic reactor through homoacetogenesis.
    Yan BH; Selvam A; Xu SY; Wong JW
    Bioresour Technol; 2014 May; 159():249-57. PubMed ID: 24657755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention.
    Kantzow C; Mayer A; Weuster-Botz D
    J Biotechnol; 2015 Oct; 212():11-8. PubMed ID: 26239230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete degradation of carbohydrate to carbon dioxide and methane by syntrophic cultures of Acetobacterium woodii and Methanosarcina barkeri.
    Winter J; Wolfe RS
    Arch Microbiol; 1979 Apr; 121(1):97-102. PubMed ID: 464732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii.
    Bertsch J; Öppinger C; Hess V; Langer JD; Müller V
    J Bacteriol; 2015 May; 197(9):1681-9. PubMed ID: 25733614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of carbon monoxide dehydrogenase in acetate synthesis by the acetogenic bacterium, Acetobacterium woodii.
    Shanmugasundaram T; Ragsdale SW; Wood HG
    Biofactors; 1988 Jul; 1(2):147-52. PubMed ID: 2855585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of the acetogenic bacterium Acetobacterium woodii on glycerol and dihydroxyacetone.
    Trifunović D; Moon J; Poehlein A; Daniel R; Müller V
    Environ Microbiol; 2021 May; 23(5):2648-2658. PubMed ID: 33817956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Envelope ultrastructure of uncultured naturally occurring magnetotactic cocci.
    Freitas F; Keim CN; Kachar B; Farina M; Lins U
    FEMS Microbiol Lett; 2003 Feb; 219(1):33-8. PubMed ID: 12594020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of homocetogens.
    Diekert G; Wohlfarth G
    Antonie Van Leeuwenhoek; 1994; 66(1-3):209-21. PubMed ID: 7747932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological acetate production from carbon dioxide by Acetobacterium woodii and Clostridium ljungdahlii: The effect of cell immobilization.
    Cheng HH; Syu JC; Tien SY; Whang LM
    Bioresour Technol; 2018 Aug; 262():229-234. PubMed ID: 29709841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A low phosphorylation potential in the acetogen Acetobacterium woodii reflects its lifestyle at the thermodynamic edge of life.
    Spahn S; Brandt K; Müller V
    Arch Microbiol; 2015 Aug; 197(6):745-51. PubMed ID: 25820826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the Na+-driven flagellum from the homoacetogenic bacterium Acetobacterium woodii.
    Aufurth S; Madkour M; Mayer F; Müller V
    FEBS Lett; 1998 Sep; 434(3):325-8. PubMed ID: 9742948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction engineering analysis of hydrogenotrophic production of acetic acid by Acetobacterium woodii.
    Demler M; Weuster-Botz D
    Biotechnol Bioeng; 2011 Feb; 108(2):470-4. PubMed ID: 20830677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissection of the caffeate respiratory chain in the acetogen Acetobacterium woodii: identification of an Rnf-type NADH dehydrogenase as a potential coupling site.
    Imkamp F; Biegel E; Jayamani E; Buckel W; Müller V
    J Bacteriol; 2007 Nov; 189(22):8145-53. PubMed ID: 17873051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum.
    Zaar K
    J Cell Biol; 1979 Mar; 80(3):773-7. PubMed ID: 457769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of a new hydrogen-utilizing bacterium from the rumen.
    Rieu-Lesme F; Fonty G; Doré J
    FEMS Microbiol Lett; 1995 Jan; 125(1):77-82. PubMed ID: 7867923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Acetobacterium malicum strain HAAP-1 isolated from a methanogenic mixed culture.
    Adrian NR; Arnett CM
    Curr Microbiol; 2004 May; 48(5):332-40. PubMed ID: 15060728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.