BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 5970526)

  • 1. Isolation of a phosphorylated intermediate involved in the ADP-ATP exchange reaction.
    Colomb MG; Laturaze JG; Vignais PV
    Biochem Biophys Res Commun; 1966 Sep; 24(6):909-15. PubMed ID: 5970526
    [No Abstract]   [Full Text] [Related]  

  • 2. Properties of a nucleoside diphosphokinase from liver mitochondria and its relationship to the adenosine triphosphate-adenosine diphosphate exchange reaction.
    Glaze RP; Wadkins CL
    J Biol Chem; 1967 May; 242(9):2139-50. PubMed ID: 6022860
    [No Abstract]   [Full Text] [Related]  

  • 3. Phosphorylation of bound adenosine monophosphate in the electron transfer particle, driven by succinate.
    Ozawa T; MacLennan DH
    Biochem Biophys Res Commun; 1965 Dec; 21(6):537-42. PubMed ID: 5879462
    [No Abstract]   [Full Text] [Related]  

  • 4. The kinetics and inhibition of the adenosine diphosphate-adenosine triphosphate exchange catalyzed by purified mitochondrial nucleoside diphosphokinase.
    Goffeau A; Pedersen PL; Lehninger AL
    J Biol Chem; 1967 Apr; 242(8):1845-53. PubMed ID: 6024775
    [No Abstract]   [Full Text] [Related]  

  • 5. Adenosine triphosphate-adenosine 5'-monophosphate phosphotransferase of bovine liver mitochondria. II. General kinetic and structural properties.
    Markland FS; Wadkins CL
    J Biol Chem; 1966 Sep; 241(18):4136-45. PubMed ID: 5924638
    [No Abstract]   [Full Text] [Related]  

  • 6. [ISOLATION OF AN ENZYME COMPLEX FROM THE ADP-ATP-REDUCED CYTOCHROME C EXCHANGE].
    LATURAZE J; VIGNAIS PV
    Biochim Biophys Acta; 1964 Oct; 92():184-7. PubMed ID: 14243776
    [No Abstract]   [Full Text] [Related]  

  • 7. ATP formation from ADP and a phosphorylated intermediate of Ca2+-dependent ATPase in fragmented sarcoplasmic reticulum.
    Kanazawa T; Yamada S; Tonomura Y
    J Biochem; 1970 Oct; 68(4):593-5. PubMed ID: 4249833
    [No Abstract]   [Full Text] [Related]  

  • 8. Participation of N1-oxide derivatives of adenine nucleotides in the phosphotransferase activity of liver mitochondria.
    Jebeleanu G; Ty NG; Mantsch HH; Bârzu O; Niac G; Abrudan I
    Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4630-4. PubMed ID: 4373722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An intermediate of oxidative phosphorylation from Alcaligenes faecalis.
    Pinchot GB; Salmon BJ
    Arch Biochem Biophys; 1966 Aug; 115(2):345-59. PubMed ID: 4291036
    [No Abstract]   [Full Text] [Related]  

  • 10. Studies on the stabilization of an oxidative phosphorylation system. I. Resistance of a phosphorylating system of submitochondrial particles to trypsin, due to phosphorylation of ADP.
    Luzikov VN; Saks VA; Kupriyanov VV
    Biochim Biophys Acta; 1971 Nov; 253(1):46-57. PubMed ID: 4331272
    [No Abstract]   [Full Text] [Related]  

  • 11. Partial resolution of the enzymes catalyzing oxidative phosphorylation. IV. Formation of a complex between coupling factor 1 and adenosine diphosphate and its relation to the 14C-adenosine diphosphate-adenosine triphosphate exchange reaction.
    Zalkin H; Pullman ME; Racker E
    J Biol Chem; 1965 Oct; 240(10):4011-6. PubMed ID: 5842069
    [No Abstract]   [Full Text] [Related]  

  • 12. Nucleoside diphosphokinase from beef heart mitochondria. Purification and properties.
    Colomb MG; Chéruy A; Vignais PV
    Biochemistry; 1969 May; 8(5):1926-39. PubMed ID: 5785215
    [No Abstract]   [Full Text] [Related]  

  • 13. Adenine nucleotide metabolism of blood platelets. I. Adenosine kinase and nucleotide formation from exogenous adenosine and AMP.
    Holmsen H; Rozenberg MC
    Biochim Biophys Acta; 1968 Feb; 155(2):326-41. PubMed ID: 4966042
    [No Abstract]   [Full Text] [Related]  

  • 14. Contribution of ATP synthesis from endogenous substrates to the oligomycin-sensitive ADP-ATP exchange activity of rat liver mitoplasts.
    Pedersen PL; Catterall WA
    Biochem Biophys Res Commun; 1971 Nov; 45(3):809-15. PubMed ID: 4256848
    [No Abstract]   [Full Text] [Related]  

  • 15. An attempt to detect phosphorylated myosin by ADP-ATP exchange.
    Ikezawa H; Ikezawa K; Tonomura Y; Morales MF
    J Biochem; 1971 May; 69(5):901-7. PubMed ID: 4252707
    [No Abstract]   [Full Text] [Related]  

  • 16. The adenosine diphosphate-adenosine triphosphate exchange reaction of extracted cerebral microsomes.
    Swanson PD
    J Neurochem; 1968 Oct; 15(10):1159-67. PubMed ID: 4237233
    [No Abstract]   [Full Text] [Related]  

  • 17. Adenine nucleotide translocation of mitochondria. Identification of carrier sites.
    Weidemann MJ; Erdelt H; Klingenberg M
    Eur J Biochem; 1970 Oct; 16(2):313-35. PubMed ID: 4248602
    [No Abstract]   [Full Text] [Related]  

  • 18. Esterification of adenosine monophosphate coupled with the respiration of heavy beef heart mitochondria.
    Ozawa T
    J Biochem; 1969 May; 65(5):679-91. PubMed ID: 5806963
    [No Abstract]   [Full Text] [Related]  

  • 19. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal mus le. V. Vectorial requirements for calcium and magnesium ions of three partial reactions of ATPase: formation and decomposition of a phosphorylated intermediate and ATP-formation from ADP and the intermediate.
    Kanazawa T; Yamada A; Yamamoto T; Tonomura Y
    J Biochem; 1971 Jul; 70(1):95-123. PubMed ID: 4254539
    [No Abstract]   [Full Text] [Related]  

  • 20. [Enzymatic implications in the use of energy of macroergic phosphorated systems in the myocardium].
    Păuşescu E
    Med Interna (Bucur); 1970 May; 22(5):523-38. PubMed ID: 4246614
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.