BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 5971851)

  • 1. Near-infrared action spectra of fluorescence, cytochrome oxidation and shift in carotenoid absorption in purple bacteria.
    Amesz J; Vredenberg WJ
    Biochim Biophys Acta; 1966 Oct; 126(2):254-61. PubMed ID: 5971851
    [No Abstract]   [Full Text] [Related]  

  • 2. Photooxidation of cytochromes in reaction center preparations from Chromatium and Rhodopseudomonas viridis.
    Case GD; Parson WW; Thornber JP
    Biochim Biophys Acta; 1970 Nov; 223(1):122-8. PubMed ID: 5484048
    [No Abstract]   [Full Text] [Related]  

  • 3. The sizes of the photosynthetic energy-transducing units in purple bacteria determined by single flash yield, titration by antibiotics and carotenoid absorption band shift.
    Nishimura M
    Biochim Biophys Acta; 1970 Jan; 197(1):69-77. PubMed ID: 5412035
    [No Abstract]   [Full Text] [Related]  

  • 4. [Formation of chlorophyll by purple and green bacteria during their photoautotrophic and photoheterotrophic development].
    MOSHENTSEVA LV; KONDRAT'EVA EN
    Mikrobiologiia; 1962; 31():199-202. PubMed ID: 14476474
    [No Abstract]   [Full Text] [Related]  

  • 5. Nature of photochemical reactions in chromatophores of Chromatium D. II. Quantum yield of photooxidation of cytochromes in chromatium chromatophores.
    Takamiya K; Nishimura M
    Biochim Biophys Acta; 1974 Dec; 368(3):339-47. PubMed ID: 4451654
    [No Abstract]   [Full Text] [Related]  

  • 6. [Comparative study of light-harvesting complexes of purple photosynthetic bacteria Chromatium minutissimum and Rhodopseudomonas palustris].
    Erokhin IuE; Chugunov VA; Makhneva ZK; Agrikova IM; Shanturova TV
    Biokhimiia; 1977 Oct; 42(10):1817-24. PubMed ID: 922068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochrome photooxidations in Chromatiumchromatophores. Each P870 oxidizes two cytochrome C422 hemes.
    Parson WW
    Biochim Biophys Acta; 1969; 189(3):397-403. PubMed ID: 5363977
    [No Abstract]   [Full Text] [Related]  

  • 8. Energy transfer in bacterial photosynthesis. I. Light intensity dependences of fluorescence lifetimes.
    Borisov AY; Godik VI
    J Bioenerg; 1972 Jun; 3(3):211-20. PubMed ID: 4538075
    [No Abstract]   [Full Text] [Related]  

  • 9. Oxidation-reduction potential dependence of the interaction of cytochromes, bacteriochlorophyll and carotenoids at 77 degrees K in chromatophores of Chromatium D and Rhodopseudomonas gelatinosa.
    Dutton PL
    Biochim Biophys Acta; 1971 Jan; 226(1):63-80. PubMed ID: 5549985
    [No Abstract]   [Full Text] [Related]  

  • 10. The bacterial photosynthetic reaction center.
    Clayton RK
    Brookhaven Symp Biol; 1966; 19():62-70. PubMed ID: 5966926
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of reduction of the reaction center intermediate upon the picosecond oxidation reaction of the bacteriochlorophyll dimer in Chromatium vinosum and Rhodo Pseudomonas viridis.
    Netzel TL; Rentzepis PM; Tiede DM; Prince RC; Dutton PL
    Biochim Biophys Acta; 1977 Jun; 460(3):467-79. PubMed ID: 880297
    [No Abstract]   [Full Text] [Related]  

  • 12. [The light induced transformations of chlorophyll studied with differential spectrophotometry].
    Karapetian NV; Litvin FF; KrasnovskiÄ­ AA
    Biofizika; 1963; 8(2):191-200. PubMed ID: 22403835
    [No Abstract]   [Full Text] [Related]  

  • 13. Cytochrome photooxidation at liqud nitrogen temperatures in photosynthetic bacteria.
    Kihara T; Chance B
    Biochim Biophys Acta; 1969 Sep; 189(1):116-24. PubMed ID: 5822417
    [No Abstract]   [Full Text] [Related]  

  • 14. Light-induced reactions of photosynthetic bacteria. I. Reactions in whole cells and in cell-free extracts at liquid nitrogen temperatures.
    Kihara T; Dutton PL
    Biochim Biophys Acta; 1970; 205(2):196-204. PubMed ID: 5420963
    [No Abstract]   [Full Text] [Related]  

  • 15. The role of P870 in bacterial photosynthesis.
    Parson WW
    Biochim Biophys Acta; 1968 Jan; 153(1):248-59. PubMed ID: 5638394
    [No Abstract]   [Full Text] [Related]  

  • 16. Trace metal composition of photosynthetic bacteria.
    Kassner RJ; Kamen MD
    Biochim Biophys Acta; 1968 Jan; 153(1):270-8. PubMed ID: 4295561
    [No Abstract]   [Full Text] [Related]  

  • 17. Isolation and spectral characteristics of the photochemical reaction center of Rhodopseudomonas viridis.
    Trosper TL; Benson DL; Thornber PJ
    Biochim Biophys Acta; 1977 May; 460(2):318-30. PubMed ID: 870038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic reaction center transients, P435 and P424, in Chromatium D.
    Seibert M; DeVault D
    Biochim Biophys Acta; 1971 Dec; 253(2):396-411. PubMed ID: 5133535
    [No Abstract]   [Full Text] [Related]  

  • 19. Water and cytochrome oxidation-reduction reactions.
    Kihara T; McCray JA
    Biochim Biophys Acta; 1973 Feb; 292(2):297-309. PubMed ID: 4349915
    [No Abstract]   [Full Text] [Related]  

  • 20. X-ray diffraction studies on chromatophore membrane from photosynthetic bacteria. II. Comparison of diffraction patterns of photosynthetic units from various purple bacteria.
    Kataoka M; Inai K; Ueki T; Yamashita J
    J Biochem; 1984 Feb; 95(2):567-73. PubMed ID: 6425275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.