These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 5971974)

  • 1. Development of the flagellar apparatus of Naegleria.
    Dingle AD; Fulton C
    J Cell Biol; 1966 Oct; 31(1):43-54. PubMed ID: 5971974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional regulation of coordinate changes in flagellar mRNAs during differentiation of Naegleria gruberi amebae into flagellates.
    Lee JH; Walsh CJ
    Mol Cell Biol; 1988 Jun; 8(6):2280-7. PubMed ID: 3405205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basal bodies, but not centrioles, in Naegleria.
    Fulton C; Dingle AD
    J Cell Biol; 1971 Dec; 51(3):826-36. PubMed ID: 4942778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flagellar apparatus duplication and partition, flagellar transformation during division in Entosiphon sulcatum.
    Brugerolle G
    Biosystems; 1992; 28(1-3):203-9. PubMed ID: 1292664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation, ultrastructure, and protein composition of the flagellar rootlet of Naegleria gruberi.
    Larson DE; Dingle AD
    J Cell Biol; 1981 Jun; 89(3):424-32. PubMed ID: 7251660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flagellar regeneration in protozoan flagellates.
    Rosenbaum JL; Child FM
    J Cell Biol; 1967 Jul; 34(1):345-64. PubMed ID: 6033540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The flagellar apparatus of heteroloboseans.
    Brugerolle G; Simpson AG
    J Eukaryot Microbiol; 2004; 51(1):96-107. PubMed ID: 15068271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ameba-to-flagellate transformation in Tetramitus rostratus. II. Microtubular morphogenesis.
    Outka DE; Kluss BC
    J Cell Biol; 1967 Nov; 35(2):323-46. PubMed ID: 4861775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructure and development of the flagellar apparatus and flagellar motion in the colonial graeen alga Astrephomene gubernaculifera.
    Hoops HJ; Floyd GL
    J Cell Sci; 1983 Sep; 63():21-41. PubMed ID: 6630310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and assembly of the cytoskeleton of Naegleria gruberi flagellates.
    Walsh C
    J Cell Biol; 1984 Feb; 98(2):449-56. PubMed ID: 6363422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flagellar systems in the euglenoid flagellates.
    Farmer MA; Triemer RE
    Biosystems; 1988; 21(3-4):283-91. PubMed ID: 3395684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo formation of basal bodies during cellular differentiation of Naegleria gruberi: progress and hypotheses.
    Lee J
    Semin Cell Dev Biol; 2010 Apr; 21(2):156-62. PubMed ID: 20035893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On flagellar structure in certain flagellates.
    GIBBONS IR; GRIMSTONE AV
    J Biophys Biochem Cytol; 1960 Jul; 7(4):697-716. PubMed ID: 13827900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flagellar elongation and shortening in Chlamydomonas. The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins.
    Rosenbaum JL; Moulder JE; Ringo DL
    J Cell Biol; 1969 May; 41(2):600-19. PubMed ID: 5783876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell differentiation and flagellar elongation in Naegleria gruberi. Dependence on transcription and translation.
    Fulton C; Walsh C
    J Cell Biol; 1980 May; 85(2):346-60. PubMed ID: 6154711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-shock induction of multiple flagella induces additional synthesis of flagellum specific mRNAs and tubulin.
    Mar J; Walsh CJ
    Exp Cell Res; 2008 Feb; 314(4):896-902. PubMed ID: 18201698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas.
    Ringo DL
    J Cell Biol; 1967 Jun; 33(3):543-71. PubMed ID: 5341020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of actin, actomyosin and microtubules in defining cell shape during the differentiation of Naegleria amebae into flagellates.
    Walsh CJ
    Eur J Cell Biol; 2007 Feb; 86(2):85-98. PubMed ID: 17189659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmed appearance of translatable flagellar tubulin mRNA during cell differentiation in Naegleria.
    Lai EY; Walsh C; Wardell D; Fulton C
    Cell; 1979 Aug; 17(4):867-78. PubMed ID: 487433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organization of the flagellar apparatus and associate cytoplasmic microtubules in the quadriflagellate alga Polytomella agilis.
    Brown DL; Massalski A; Patenaude R
    J Cell Biol; 1976 Apr; 69(1):106-25. PubMed ID: 767347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.