These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 5972372)

  • 1. Wave transmission through an assembly of randomly branching elastic tubes.
    Taylor MG
    Biophys J; 1966 Nov; 6(6):697-716. PubMed ID: 5972372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The input impedance of an assembly of randomly branching elastic tubes.
    Taylor MG
    Biophys J; 1966 Jan; 6(1):29-51. PubMed ID: 5903152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Input impedance and reflection coefficient in fractal-like models of asymmetrically branching compliant tubes.
    Brown DJ
    IEEE Trans Biomed Eng; 1996 Jul; 43(7):715-22. PubMed ID: 9216143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Cardiovascular physiology. Elasticity and viscoelasticity of the circulatory system. I. Physical basis. II. Arteries].
    Bettencourt MJ
    Rev Port Cardiol; 1994 Apr; 13(4):337-54,292. PubMed ID: 7917383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Regional differences in viscosity, elasticity and wall buffering function in systemic arteries: pulse wave analysis of the arterial pressure-diameter relationship].
    Bia D; Aguirre I; Zócalo Y; Devera L; Cabrera Fischer E; Armentano R
    Rev Esp Cardiol; 2005 Feb; 58(2):167-74. PubMed ID: 15743563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental study on the pressure and pulse wave propagation in viscoelastic vessel tubes-effects of liquid viscosity and tube stiffness.
    Ikenaga Y; Nishi S; Komagata Y; Saito M; Lagrée PY; Asada T; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2381-8. PubMed ID: 24158293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulse wave attenuation measurement by linear and nonlinear methods in nonlinearly elastic tubes.
    Bertram CD; Pythoud F; Stergiopulos N; Meister JJ
    Med Eng Phys; 1999 Apr; 21(3):155-66. PubMed ID: 10468357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The non-linearities of arterial blood flow.
    Bodley WE
    Phys Med Biol; 1971 Oct; 16(4):663-72. PubMed ID: 5153702
    [No Abstract]   [Full Text] [Related]  

  • 10. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results.
    Saito M; Ikenaga Y; Matsukawa M; Watanabe Y; Asada T; Lagrée PY
    J Biomech Eng; 2011 Dec; 133(12):121005. PubMed ID: 22206422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulse wave reflections from arterial discontinuities.
    Laogun AA
    Afr J Med Med Sci; 1982 Jun; 11(2):87-94. PubMed ID: 6301248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel laboratory approach for the demonstration of hemodynamic principles: the arterial blood flow reflection.
    Djelić M; Mazić S; Žikić D
    Adv Physiol Educ; 2013 Dec; 37(4):321-6. PubMed ID: 24292908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wave propagation through a viscous fluid-filled elastic tube under initial pressure: theoretical and biophysical model.
    Žikić D; Žikić K
    Eur Biophys J; 2022 Jul; 51(4-5):365-374. PubMed ID: 35618857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophysical modeling of wave propagation phenomena: experimental determination of pulse wave velocity in viscous fluid-filled elastic tubes in a gravitation field.
    Žikić D; Stojadinović B; Nestorović Z
    Eur Biophys J; 2019 Jul; 48(5):407-411. PubMed ID: 31201474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impedance of arterial system simulated by viscoelastic t tubes terminated in windkessels.
    Liu ZR; Shen F; Yin FC
    Am J Physiol; 1989 Apr; 256(4 Pt 2):H1087-99. PubMed ID: 2705551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport phenomena in pulsating post-stenotic vortex flow in arteries. An interactive concept of fluid-dynamic, haemorheological and biochemical processes in white thrombus formation.
    Schmid-Schönbein H; Wurzinger LJ
    Nouv Rev Fr Hematol (1978); 1986; 28(5):257-67. PubMed ID: 3543838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wave propagation through a viscous fluid contained in a tethered, initially stresses, orthotropic elastic tube.
    Atabek HB
    Biophys J; 1968 May; 8(5):626-49. PubMed ID: 5699800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impedance and wave reflection in arterial system: simulation with geometrically tapered T-tubes.
    Chang KC; Tseng YZ; Kuo TS; Chen HI
    Med Biol Eng Comput; 1995 Sep; 33(5):652-60. PubMed ID: 8523906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periodic flow of a viscous liquid in a thick-walled elastic tube.
    Whirlow DK; Rouleau WT
    Bull Math Biophys; 1965 Sep; 27(3):355-70. PubMed ID: 5867002
    [No Abstract]   [Full Text] [Related]  

  • 20. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms.
    Nichols WW
    Am J Hypertens; 2005 Jan; 18(1 Pt 2):3S-10S. PubMed ID: 15683725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.