These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 5972405)

  • 21. Identification of topaquinone, as illustrated for pig kidney diamine oxidase and Escherichia coli amine oxidase.
    Steinebach V; Groen BW; Wijmenga SS; Niessen WM; Jongejan JA; Duine JA
    Anal Biochem; 1995 Sep; 230(1):159-66. PubMed ID: 8585612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalytic properties of D-amino acid oxidase in cephalosporin C bioconversion: a comparison between proteins from different sources.
    Pollegioni L; Caldinelli L; Molla G; Sacchi S; Pilone MS
    Biotechnol Prog; 2004; 20(2):467-73. PubMed ID: 15058991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The oxidation of malic and meso tartaric acids in pigeon-liver extracts.
    SCHOLEFIELD PG
    Biochem J; 1955 Feb; 59(2):177-9. PubMed ID: 14351176
    [No Abstract]   [Full Text] [Related]  

  • 24. On the existence of quasi D-amino acid oxidase in hog kidney extract.
    Shiga K; Nishina Y; Horiike K; Tojo H; Watari H; Yamano T
    Med J Osaka Univ; 1980 Mar; 30(3-4):71-8. PubMed ID: 6106154
    [No Abstract]   [Full Text] [Related]  

  • 25. Engineering the substrate specificity of porcine kidney D-amino acid oxidase by mutagenesis of the "active-site lid".
    Setoyama C; Nishina Y; Mizutani H; Miyahara I; Hirotsu K; Kamiya N; Shiga K; Miura R
    J Biochem; 2006 May; 139(5):873-9. PubMed ID: 16751595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional and structural characterization of D-aspartate oxidase from porcine kidney: non-Michaelis kinetics due to substrate activation.
    Yamamoto A; Tanaka H; Ishida T; Horiike K
    J Biochem; 2007 Mar; 141(3):363-76. PubMed ID: 17234685
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of histamine and pheniramine maleate on the activities of dehydrogenases and acetylcholinesterase in sheep kidney homogenate.
    Rao KV; Swami KS
    Ann Allergy; 1969 Sep; 27(9):429-33. PubMed ID: 5806028
    [No Abstract]   [Full Text] [Related]  

  • 28. Cellular and subcellular distribution of D-aspartate oxidase in human and rat brain.
    Zaar K; Köst HP; Schad A; Völkl A; Baumgart E; Fahimi HD
    J Comp Neurol; 2002 Aug; 450(3):272-82. PubMed ID: 12209855
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catalytic and structural characteristics of carp hepatopancreas D-amino acid oxidase expressed in Escherichia coli.
    Sarower MG; Okada S; Abe H
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Mar; 140(3):417-25. PubMed ID: 15694590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solid state grinding as a tool to aid enantiomeric resolution by cocrystallisation.
    Eddleston MD; Arhangelskis M; Friščić T; Jones W
    Chem Commun (Camb); 2012 Nov; 48(92):11340-2. PubMed ID: 23073186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermostabilization of porcine kidney D-amino acid oxidase by a single amino acid substitution.
    Bakke M; Setoyama C; Miura R; Kajiyama N
    Biotechnol Bioeng; 2006 Apr; 93(5):1023-7. PubMed ID: 16245349
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Further characterization and purification of the flavin-dependent S-benzyl-L-cysteine S-oxidase activities of rat liver and kidney microsomes.
    Sausen PJ; Duescher RJ; Elfarra AA
    Mol Pharmacol; 1993 Mar; 43(3):388-96. PubMed ID: 8450833
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation and identification by gas chromatographic mass spectrometry of the carbonyl-active site of pig kidney diamine oxidase.
    Buffoni F
    Anal Biochem; 1994 Jul; 220(1):185-91. PubMed ID: 7978244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Comparative toxicity of free ions of copper and copper complexes with organic acids for Candida utilis].
    Avakian ZA; Rabotnova IL
    Mikrobiologiia; 1971; 40(2):305-10. PubMed ID: 5560558
    [No Abstract]   [Full Text] [Related]  

  • 35. Effect of tartaric acid on conformation and stability of human prostatic phosphatase: an infrared spectroscopic and calorimetric study.
    Bem S; Ostrowski WS
    Acta Biochim Pol; 2001; 48(3):755-62. PubMed ID: 11833784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Erosive effects of different acids on bovine enamel: release of calcium and phosphate in vitro.
    Hannig C; Hamkens A; Becker K; Attin R; Attin T
    Arch Oral Biol; 2005 Jun; 50(6):541-52. PubMed ID: 15848147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of whole-body x radiation on flavoprotein enzymes. ANL-7635.
    Feinstein RN; Howard JB; Faulhaber JT
    ANL Rep; 1969 Dec; ():20-1. PubMed ID: 5310782
    [No Abstract]   [Full Text] [Related]  

  • 38. Distribution of prostaglandin metabolizing enzymes in tissues of the swine.
    Larsson C; Anggård E
    Acta Pharmacol Toxicol (Copenh); 1970; 28(1):61. PubMed ID: 5314432
    [No Abstract]   [Full Text] [Related]  

  • 39. The assay of animal tissues for respiratory enzymes; the malic dehydrogenas system.
    POTTER VR
    J Biol Chem; 1946 Sep; 165(1):311-24. PubMed ID: 21001211
    [No Abstract]   [Full Text] [Related]  

  • 40. [Glycosides of malic acid and tartaric acid].
    Helferich B; Arndt O
    Justus Liebigs Ann Chem; 1965 Jul; 686():206-9. PubMed ID: 5860631
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.