These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 5972817)
1. Adenosine monophosphate as the first phosphoryl acceptor in oxidative phosphorylation. Ozawa T Arch Biochem Biophys; 1966 Nov; 117(2):201-23. PubMed ID: 5972817 [No Abstract] [Full Text] [Related]
2. Inorganic orthophosphate activation and adenosine diphosphate as the primary phosphoryl acceptor in oxidative phosphorylation. Hill RD; Boyer PD J Biol Chem; 1967 Oct; 242(19):4320-3. PubMed ID: 6070842 [No Abstract] [Full Text] [Related]
3. Adenosine diphosphate as the primary phosphoryl acceptor in oxidative phosphorylation. Colli W; Pullman ME J Biol Chem; 1969 Jan; 244(1):135-41. PubMed ID: 4975222 [No Abstract] [Full Text] [Related]
4. Esterification of adenosine monophosphate coupled with the respiration of heavy beef heart mitochondria. Ozawa T J Biochem; 1969 May; 65(5):679-91. PubMed ID: 5806963 [No Abstract] [Full Text] [Related]
5. The affinity of mitochondrial oxidative phosphorylation mechanisms for phosphate and adenosine diphosphate. Bygrave FL; Lehninger AL Proc Natl Acad Sci U S A; 1967 May; 57(5):1409-15. PubMed ID: 4227016 [No Abstract] [Full Text] [Related]
6. The apparent absolute requirement of adenosine diphosphate for the inorganic phosphate--water exchange of oxidative phosphorylation. Jones DH; Boyer PD J Biol Chem; 1969 Nov; 244(21):5767-72. PubMed ID: 5350933 [No Abstract] [Full Text] [Related]
7. Mitochondrial phosphoriodohistidine. A possible high energy intermediate of oxidative phosphorylation. Perlgut LE; Wainio WW Biochemistry; 1966 Feb; 5(2):608-18. PubMed ID: 5940946 [No Abstract] [Full Text] [Related]
8. Oxidation and phosphorylation processes in brain mitochondria of rats exposed to carbon disulphide. Tarkowski S; Sobczak H J Neurochem; 1971 Feb; 18(2):177-82. PubMed ID: 5550083 [No Abstract] [Full Text] [Related]
9. Studies on the stabilization of an oxidative phosphorylation system. I. Resistance of a phosphorylating system of submitochondrial particles to trypsin, due to phosphorylation of ADP. Luzikov VN; Saks VA; Kupriyanov VV Biochim Biophys Acta; 1971 Nov; 253(1):46-57. PubMed ID: 4331272 [No Abstract] [Full Text] [Related]
10. Intramitochondrial uptake of 32P in adenine nucleotides in congestive heart failure. Plechaty M; Gertler MM; Guthrie RG Biochim Biophys Acta; 1966 Oct; 127(2):524-6. PubMed ID: 5964988 [No Abstract] [Full Text] [Related]
11. Partial resolution of the enzymes catalyzine oxidative phosphorylation. XII. The H-2-18-O-inorganic phosphate and H-2-18-O-adenosine triphosphate exchange reactions in submitochondrial particles from beef heart. Hinkle PC; Penefsky HS; Racker E J Biol Chem; 1967 Apr; 242(8):1788-92. PubMed ID: 6024769 [No Abstract] [Full Text] [Related]
12. [ISOLATION OF AN ENZYME COMPLEX FROM THE ADP-ATP-REDUCED CYTOCHROME C EXCHANGE]. LATURAZE J; VIGNAIS PV Biochim Biophys Acta; 1964 Oct; 92():184-7. PubMed ID: 14243776 [No Abstract] [Full Text] [Related]
13. The response of the respiratory chain and adenine nucleotide system to oxidative phosphorylation in yeast mitochondria. Onishi T; Kröger A; Heldt HW; Pfaff E; Klingenberg M Eur J Biochem; 1967 May; 1(3):301-11. PubMed ID: 4293926 [No Abstract] [Full Text] [Related]
14. [Effect of norepinephrine and ouabain on the oxidative phosphorylation in the guinea pig heart mitochondria]. Momma Y Nihon Yakurigaku Zasshi; 1969 May; 65(3):289-92. PubMed ID: 5388121 [No Abstract] [Full Text] [Related]
15. Phosphorylation of bound adenosine monophosphate in the electron transfer particle, driven by succinate. Ozawa T; MacLennan DH Biochem Biophys Res Commun; 1965 Dec; 21(6):537-42. PubMed ID: 5879462 [No Abstract] [Full Text] [Related]
16. Mitochondrial oxidative phosphorylation. Schatz G Angew Chem Int Ed Engl; 1967 Dec; 6(12):1035-46. PubMed ID: 4965486 [No Abstract] [Full Text] [Related]
17. ENDOGENOUS ADP OF MITOCHONDRIA, AN EARLY PHOSPHATE ACCEPTOR OF OXIDATIVE PHOSPHORYLATION AS DISCLOSED BY KINETIC STUDIES WITH C14 LABELLED ADP AND ATP AND WITH ATRACTYLOSIDE. HELDT HW; JACOBS H; KLINGENBERG M Biochem Biophys Res Commun; 1965 Jan; 18():174-9. PubMed ID: 14282014 [No Abstract] [Full Text] [Related]
18. Comparative studies of the ADP-ATP and the Pi-ATP exchange reactions related to oxidative phosphorylation in rat-liver mitochondria. Groot GS Biochim Biophys Acta; 1969 Aug; 180(3):439-44. PubMed ID: 5810845 [No Abstract] [Full Text] [Related]
19. Inhibition of mitochondrial energy-linked functions by arsenate. Evidence for a nonhydrolytic mode of inhibitor action. Mitchell RA; Chang BF; Huang CH; DeMaster EG Biochemistry; 1971 May; 10(11):2049-54. PubMed ID: 4327397 [No Abstract] [Full Text] [Related]
20. Studies on energy transfer in mitochondrial oxidative phosphorylation. 3. On the interaction of adenosine diphosphate with high-energy intermediates. Eisenhardt RH; Rosenthal O Biochemistry; 1968 Apr; 7(4):1327-33. PubMed ID: 5677821 [No Abstract] [Full Text] [Related] [Next] [New Search]