These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 597329)

  • 1. The asymmetric distribution of chlorpromazine and its quaternary analogue over the erythrocyte membrane.
    Elfernik JG
    Biochem Pharmacol; 1977 Dec; 26(24):2411-6. PubMed ID: 597329
    [No Abstract]   [Full Text] [Related]  

  • 2. Binding of two spin-labelled derivatives of chlorpromazine to human erythrocytes.
    Olivier JL; Chachaty C; Wolf C; Daveloose D; Bereziat G
    Biochem J; 1989 Dec; 264(3):633-41. PubMed ID: 2559714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence studies of membrane interactions of chlorpromazine and chlorimipramine.
    Elferink JG
    Biochem Pharmacol; 1977 Mar; 26(6):511-5. PubMed ID: 849348
    [No Abstract]   [Full Text] [Related]  

  • 4. Differential binding of chlorpromazine to human blood cells: application of the hygroscopic desorption method.
    Bondy B; Remien J
    Life Sci; 1981 Jan; 28(4):441-9. PubMed ID: 7219057
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of chlorpromazine on monosaccharide transport in fish erythrocytes.
    Bolis L; Canciglia P; Trischitta F
    Pharmacol Res Commun; 1982 Apr; 14(4):321-6. PubMed ID: 7100231
    [No Abstract]   [Full Text] [Related]  

  • 6. Partition of amphiphilic molecules into phospholipid vesicles and human erythrocyte ghosts: measurements by ultraviolet difference spectroscopy.
    Welti R; Mullikin LJ; Yoshimura T; Helmkamp GM
    Biochemistry; 1984 Dec; 23(25):6086-91. PubMed ID: 6525345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased viscosity of human erythrocyte suspension induced by chlorpromazine and isoxsuprine.
    Suda T; Shimizu D; Maeda N; Shiga T
    Biochem Pharmacol; 1981 Aug; 30(15):2057-64. PubMed ID: 7295326
    [No Abstract]   [Full Text] [Related]  

  • 8. Application of differential flow microcalorimetry for study of drug interactions in the blood system.
    Yamamoto M; Aki H
    J Biochem Biophys Methods; 1988 Aug; 16(4):271-82. PubMed ID: 3221038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association and partitioning of propranolol in model and biological membranes.
    Rogers JA; Cheng S; Betageri GV
    Biochem Pharmacol; 1986 Jul; 35(13):2259-61. PubMed ID: 3729981
    [No Abstract]   [Full Text] [Related]  

  • 10. Transposition and distribution of cholesterol in rat erythrocytes.
    Bloj B; Zilversmit DB
    Proc Soc Exp Biol Med; 1977 Dec; 156(3):539-43. PubMed ID: 594085
    [No Abstract]   [Full Text] [Related]  

  • 11. Involvement of erythrocyte skeletal proteins in the modulation of membrane fluidity by phenothiazines.
    Minetti M; Di Stasi AM
    Biochemistry; 1987 Dec; 26(25):8133-7. PubMed ID: 2831937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erythrocyte membrane cholesterol: an explanation of the aging effect on the rate of hemolysis.
    Araki K; Rifkind JM
    Life Sci; 1980 Jun; 26(26):2223-30. PubMed ID: 7401919
    [No Abstract]   [Full Text] [Related]  

  • 13. Biphasic nature of the binding of cationic amphipaths with artificial and biological membranes.
    Zachowski A; Durand P
    Biochim Biophys Acta; 1988 Jan; 937(2):411-6. PubMed ID: 3337809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of plasma and erythrocyte chlorpromazine and N-monodesmethylchlorpromazine levels by gas chromatography with a nitrogen sensitive detector.
    Linnoila M; Dorrity F
    Acta Pharmacol Toxicol (Copenh); 1978 Apr; 42(4):264-70. PubMed ID: 580673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of chlorpromazine with biological membranes. A photochemical study using spin labels.
    Leterrier F; Mendyk A; Viret J
    Biochem Pharmacol; 1976 Nov; 25(22):2469-74. PubMed ID: 186073
    [No Abstract]   [Full Text] [Related]  

  • 16. Interaction of isotopically labeled and unlabeled filipin with egg lecithin veiscles and rat erythrocytes.
    Kelly PM; Holland JF; Bieber LL
    Biochemistry; 1979 Oct; 18(22):4769-75. PubMed ID: 574401
    [No Abstract]   [Full Text] [Related]  

  • 17. Interaction of chlorpromazine with the human erythrocyte membrane.
    Lieber MR; Lange Y; Weinstein RS; Steck TL
    J Biol Chem; 1984 Jul; 259(14):9225-34. PubMed ID: 6746647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydraulic permeability coefficients of individual human erythrocytes.
    Jay AW
    Can J Physiol Pharmacol; 1978 Jun; 56(3):458-64. PubMed ID: 667720
    [No Abstract]   [Full Text] [Related]  

  • 19. Utilization of membranous lipid substrates by membranous enzymes. Hydrolysis of sphingomyelin in erythrocyte 'ghosts' and liposomes by the membranous sphingomyelinase of chicken erythrocyte 'ghosts'.
    Record M; Loyter A; Gatt S
    Biochem J; 1980 Apr; 187(1):115-21. PubMed ID: 6250532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of erythrocyte ghost membrane mechanical stability by chlorpromazine.
    Enomoto A; Takakuwa Y; Manno S; Tanaka A; Mohandas N
    Biochim Biophys Acta; 2001 Jun; 1512(2):285-90. PubMed ID: 11406105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.