These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 597359)

  • 1. Structural basis for aconitase activity inactivation by butanedione and binding of substrates and inhibitors.
    Gawron O; Jones L
    Biochim Biophys Acta; 1977 Oct; 484(2):453-64. PubMed ID: 597359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of aconitase with trans-aconitate and nitrocitrate bound.
    Lauble H; Kennedy MC; Beinert H; Stout CD
    J Mol Biol; 1994 Apr; 237(4):437-51. PubMed ID: 8151704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 17O electron nuclear double resonance characterization of substrate binding to the [4Fe-4S]1+ cluster of reduced active aconitase.
    Telser J; Emptage MH; Merkle H; Kennedy MC; Beinert H; Hoffman BM
    J Biol Chem; 1986 Apr; 261(11):4840-6. PubMed ID: 3007476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Irreversible inactivation of human erythrocyte pyruvate kinase by 2,3-butanedione.
    Kilinç K; Ozer N
    Arch Biochem Biophys; 1984 Apr; 230(1):321-6. PubMed ID: 6712241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The conversion of citrate into cis-aconitate and isocitrate in the presence of aconitase.
    KREBS HA; HOLZACH O
    Biochem J; 1952 Nov; 52(3):527-8. PubMed ID: 13018271
    [No Abstract]   [Full Text] [Related]  

  • 6. Biochemical characterisation of aconitase from Corynebacterium glutamicum.
    Baumgart M; Bott M
    J Biotechnol; 2011 Jul; 154(2-3):163-70. PubMed ID: 20647021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorocitrate inhibition of aconitate hydratase and the tricarboxylate carrier of rat liver mitochondria.
    Brand MD; Evans SM; Mendes-Mourão J; Chappell JB
    Biochem J; 1973 May; 134(1):217-24. PubMed ID: 4723224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation, accumulation, and turnover of citrate in normal and diabetic rats.
    Cuestas R; Dixit PK
    Proc Soc Exp Biol Med; 1974 Oct; 147(1):181-7. PubMed ID: 4438322
    [No Abstract]   [Full Text] [Related]  

  • 9. Inactivation of Escherichia coli elongation factor Ts by the arginine-specific reagent butanedione.
    MarSchel AH; Bodley JW
    J Biol Chem; 1979 Mar; 254(6):1816-20. PubMed ID: 33984
    [No Abstract]   [Full Text] [Related]  

  • 10. Inactivation of L-lactate monooxygenase with 2,3-butanedione and phenylglyoxal.
    Peters RG; Jones WC; Cromartie TH
    Biochemistry; 1981 Apr; 20(9):2564-71. PubMed ID: 7236621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of aconitate hydratase activity from rat kidney cortex by bicarbonate.
    Stepiński J; Angielski S
    Acta Biochim Pol; 1976; 23(2-3):203-15. PubMed ID: 9759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro conversion of propionate to pyruvate by Salmonella enterica enzymes: 2-methylcitrate dehydratase (PrpD) and aconitase Enzymes catalyze the conversion of 2-methylcitrate to 2-methylisocitrate.
    Horswill AR; Escalante-Semerena JC
    Biochemistry; 2001 Apr; 40(15):4703-13. PubMed ID: 11294638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae.
    Malebrán LP; Cardemil E
    Biochim Biophys Acta; 1987 Oct; 915(3):385-92. PubMed ID: 3307926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible desensitization of phosphoenolpyruvate carboxylase to multiple effectors by butanedione.
    Kameshita I; Tokushige M; Izui K; Katsuki H
    Biochem Biophys Res Commun; 1977 Jun; 76(3):905-9. PubMed ID: 332159
    [No Abstract]   [Full Text] [Related]  

  • 15. Evidence for an essential arginine residue at the active site of ATP citrate lyase from rat liver.
    Ramakrishna S; Benjamin WB
    Biochem J; 1981 Jun; 195(3):735-43. PubMed ID: 7316981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH profiles and isotope effects for aconitases from Saccharomycopsis lipolytica, beef heart, and beef liver. alpha-Methyl-cis-aconitate and threo-Ds-alpha-methylisocitrate as substrates.
    Schloss JV; Emptage MH; Cleland WW
    Biochemistry; 1984 Sep; 23(20):4572-80. PubMed ID: 6093859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism of aconitase action. Evidence for an enzyme isomerization by studies of inhibition by tricarboxylic acids.
    Villafranca JJ
    J Biol Chem; 1974 Oct; 249(19):6149-55. PubMed ID: 4422090
    [No Abstract]   [Full Text] [Related]  

  • 18. Modification of an arginine residue essential for the activity of NAD-malic enzyme from Ascaris suum.
    Rao GS; Kong CT; Benjamin RC; Harris BG; Cook PF
    Arch Biochem Biophys; 1987 May; 255(1):8-13. PubMed ID: 3592670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of E. coli L-Asparaginase by reaction with 2,3-butanedione. Chemical modification of arginine and histidine residues.
    Petz D; Löffler HG; Schneider F
    Z Naturforsch C Biosci; 1979; 34(9-10):742-6. PubMed ID: 160698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Function of the arginine residue in the active center of baker's yeast transketolase].
    Usmanov RA; Kochetov GA
    Biokhimiia; 1983 May; 48(5):772-81. PubMed ID: 6347264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.