These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 5984162)

  • 1. [Electron microscopic studies on sodium and chloride transport in the proximal tubular cells of the rat kidney].
    Nolte A
    Z Zellforsch Mikrosk Anat; 1966; 72(4):562-73. PubMed ID: 5984162
    [No Abstract]   [Full Text] [Related]  

  • 2. [Electron microscopic demonstration of sodium ions in the macula densa of the middle part of the rat kidney].
    Krstić R; Bucher O
    Verh Anat Ges; 1971; 66():661-71. PubMed ID: 5161906
    [No Abstract]   [Full Text] [Related]  

  • 3. Electron microscopic studies of the epithelium of the proximal tubule of the rat kidney. 3. Microbodies, multivesicular bodies, and the golgi apparatus.
    Ericsson JL; Trump BF
    Lab Invest; 1966 Oct; 15(10):1610-33. PubMed ID: 5957287
    [No Abstract]   [Full Text] [Related]  

  • 4. [Electron microscopy studies of the renal tubules (malpighian tubules) in Drosophila melanogaster. IV. Localization of sodium and chloride ions].
    Wessing A; Eichelberg D
    Z Zellforsch Mikrosk Anat; 1972; 131(2):269-86. PubMed ID: 4627490
    [No Abstract]   [Full Text] [Related]  

  • 5. [Electron microscopic studies on structure and function of the rectal papillae in Drosophila melanogaster].
    Wessing A; Eichelberg D
    Z Zellforsch Mikrosk Anat; 1973; 136(3):415-32. PubMed ID: 4630996
    [No Abstract]   [Full Text] [Related]  

  • 6. Subcellular localization of sodium in normal and injured proximal tubules of the rat kidney.
    Tisher CC; Cirksena WJ; Arstila AU; Trump BF
    Am J Pathol; 1969 Nov; 57(2):231-51. PubMed ID: 5360266
    [No Abstract]   [Full Text] [Related]  

  • 7. The ultrastructural bases of the initial stages of renal tubular excretion. A cytochemical study using horseradish peroxidase as a tracer.
    Feria-Velasco A
    Lab Invest; 1974 Feb; 30(2):190-200. PubMed ID: 4813453
    [No Abstract]   [Full Text] [Related]  

  • 8. Acute mercuric chloride nephrotoxicity. An electron microscopic and metabolic study.
    Ganote CE; Reimer KA; Jennings RB
    Lab Invest; 1974 Dec; 31(6):633-47. PubMed ID: 4437137
    [No Abstract]   [Full Text] [Related]  

  • 9. The use of the ischaemic stop flow technique in quantitative studies of renal tubular functions.
    Ashby P; McEvoy J; Toal K
    Clin Sci; 1966 Dec; 31(3):361-9. PubMed ID: 5927688
    [No Abstract]   [Full Text] [Related]  

  • 10. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique.
    Graham RC; Karnovsky MJ
    J Histochem Cytochem; 1966 Apr; 14(4):291-302. PubMed ID: 5962951
    [No Abstract]   [Full Text] [Related]  

  • 11. [Electron microscopic and morphometric studies of the proximal tubul cells of the rat kidney following estrogen administration. Contribution on the importance of morphometry in experimental pathology].
    Rohr H; Bertram E
    Z Mikrosk Anat Forsch; 1968; 78(4):484-510. PubMed ID: 5715910
    [No Abstract]   [Full Text] [Related]  

  • 12. [Iodine-labeled dextran for electron microscopic demonstration of transport processes].
    Ernst B; Bostelmann W; Engelmann C
    Acta Biol Med Ger; 1969; 23(2):345-50. PubMed ID: 5369717
    [No Abstract]   [Full Text] [Related]  

  • 13. Ionic and voltage requirements for tubular taurine transport.
    Zelikovic I; Budreau A; Chesney RW; Iwahashi C; Lohstroh P
    Prog Clin Biol Res; 1990; 351():307-15. PubMed ID: 2236137
    [No Abstract]   [Full Text] [Related]  

  • 14. [Renal tubular transport of sugar].
    Hoshi T
    Nihon Rinsho; 1990 Dec; 48 Suppl():33-8. PubMed ID: 2086906
    [No Abstract]   [Full Text] [Related]  

  • 15. [On the histochemical localization of ions by electron microscopy, with special reference to the chloride reaction].
    Komnick H; Bierther M
    Histochemie; 1969; 18(4):337-62. PubMed ID: 4187599
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of urea on electrolyte transport in the dog kidney.
    Wong NL; Quamme GA; Dirks JH
    J Lab Clin Med; 1981 Nov; 98(5):741-50. PubMed ID: 7299244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Transport of lithium in rat renal cortex slices].
    Günther C; Kersten L; Bräunlich H
    Biomed Biochim Acta; 1983; 42(6):751-62. PubMed ID: 6314999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure of the proximal tubule: a morphological study of basement membrane cristae and their relationships in the renal tubule of the rat.
    Waugh D; Prentice RS; Yadav D
    Am J Anat; 1967 Nov; 121(3):775-85. PubMed ID: 5582411
    [No Abstract]   [Full Text] [Related]  

  • 19. [Intracellular localization and possible pathways of transcellular calcium transport in the cells of the proximal kidney tubules].
    Petruniaka VV
    Tsitologiia; 1983 Apr; 25(4):385-9. PubMed ID: 6879711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Electron microscopic studies on the hydration of the glycocalyx].
    Geyer G; Linss W; Müller A; Meyer C; Schaaf P
    Z Mikrosk Anat Forsch; 1969; 81(2):182-4. PubMed ID: 5387104
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.