These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 598434)

  • 1. Abnormalities in the visual system of Xenopus after larval optic nerve section.
    Beazley LD
    Exp Brain Res; 1977 Nov; 30(2-3):369-85. PubMed ID: 598434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of intertectal neuronal connections in xenopus: the effects of contralateral transposition of the eye and of eye removal.
    Beazley LD
    Exp Brain Res; 1975 Nov; 23(5):505-18. PubMed ID: 1204691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changing patterns of binocular visual connections in the intertectal system during development of the frog, Xenopus laevis. II. Abnormalities following early visual deprivation.
    Grant S; Keating MJ
    Exp Brain Res; 1989; 75(1):117-32. PubMed ID: 2707345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changing patterns of binocular visual connections in the intertectal system during development of the frog, Xenopus laevis. I. Normal maturational changes in response to changing binocular geometry.
    Grant S; Keating MJ
    Exp Brain Res; 1989; 75(1):99-116. PubMed ID: 2707359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regeneration of an abnormal ipsilateral visuotectal projection in Xenopus is delayed by the presence of optic fibres from the other eye.
    Straznicky C; Tay D; Glastonbury J
    J Embryol Exp Morphol; 1980 Jun; 57():129-41. PubMed ID: 7430926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct intertectal inputs are an integral component of the bilateral sensorimotor circuit for behavior in Xenopus tadpoles.
    Gambrill AC; Faulkner RL; Cline HT
    J Neurophysiol; 2018 May; 119(5):1947-1961. PubMed ID: 29442555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aberrant retinotectal pathways induced by larval unilateral optic nerve section in Xenopus.
    Tay D; Straznicky C
    Neurosci Lett; 1980 Jun; 18(2):137-42. PubMed ID: 6189019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intertectal neuronal plasticity in Xenopus laevis: persistence despite catecholamine depletion.
    Udin SB; Keating MJ; Dawes EA; Grant S; Deakin JF
    Brain Res; 1985 Mar; 351(1):81-8. PubMed ID: 3922567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinotectal map formation in dually innervated tecta: a regeneration study in Xenopus with one compound eye following bilateral optic nerve section.
    Straznicky C; Tay D
    J Comp Neurol; 1982 Apr; 206(2):119-30. PubMed ID: 7085924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changing patterns of binocular visual connections in the intertectal system during development of the frog, Xenopus laevis. III. Modifications following early eye rotation.
    Grant S; Keating MJ
    Exp Brain Res; 1992; 89(2):383-96. PubMed ID: 1623981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spreading of hemiretinal projections in the ipsilateral tectum following unilateral enucleation: a study of optic nerve regeneration in Xenopus with one compound eye.
    Straznicky C; Tay D
    J Embryol Exp Morphol; 1981 Feb; 61():259-76. PubMed ID: 7264545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experience-dependent mechanism of binocular map plasticity in Xenopus: incongruent connections are masked by retinal input.
    Brickley SG; Keating MJ; Grant S
    Neurosci Lett; 1994 Nov; 182(1):13-6. PubMed ID: 7891877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between compound and normal eye projections in dually innervated tectum: a study of optic nerve regeneration in Xenopus.
    Straznicky C; Tay D
    J Embryol Exp Morphol; 1981 Dec; 66():159-74. PubMed ID: 7338709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specification of retinotectal connexions during development of the toad Xenopus laevis.
    Sharma SC; Hollyfield JG
    J Embryol Exp Morphol; 1980 Feb; 55():77-92. PubMed ID: 7373205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aberrant retinotectal projection induced by larval unilateral enucleation in Xenopus.
    Straznicky C; Hiscock J
    Neurosci Lett; 1983 Aug; 39(1):5-10. PubMed ID: 6633938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optic fibers follow aberrant pathways from rotated eyes in Xenopus laevis.
    Grant P; Ma PM
    J Comp Neurol; 1986 Aug; 250(3):364-76. PubMed ID: 3745520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regeneration of optic nerve fibres from a compound eye to both tecta in Xenopus: evidence relating to the state of specification of the eye and the tectum.
    Gaze RM; Straznicky C
    J Embryol Exp Morphol; 1980 Dec; 60():125-40. PubMed ID: 7310265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of visual experience in the formation of binocular projections in frogs.
    Udin SB
    Cell Mol Neurobiol; 1985 Jun; 5(1-2):85-102. PubMed ID: 3896495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal specificity in eye fragments: investigations on the retinotectal projections of different quarter-eyes in Xenopus laevis.
    Brändle K; Degen N
    Exp Brain Res; 1994; 102(2):272-86. PubMed ID: 7705505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The innervation of a virgin tectum by a double-temporal or a double-nasal eye in Xenopus.
    Straznicky C; Gaze RM
    J Embryol Exp Morphol; 1982 Apr; 68():9-21. PubMed ID: 7108428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.