These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 598461)

  • 1. Experimental allergic encephalomyelitis. Water, sodium and potassium concentration in spinal cord and hemispheres and their changes after dexamethasone treatment.
    Stastný F; Matous Malbohan I; Lodin Z; Ueberberg H
    Exp Pathol (Jena); 1977; 14(6):297-302. PubMed ID: 598461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood-brain and blood-spinal cord barrier permeability during the course of experimental allergic encephalomyelitis in the rat.
    Juhler M; Barry DI; Offner H; Konat G; Klinken L; Paulson OB
    Brain Res; 1984 Jun; 302(2):347-55. PubMed ID: 6610460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical characteristics of traumatic spinal cord edema in cats. Effects of steroids on potassium depletion.
    Lewin MG; Hansebout RR; Pappius HM
    J Neurosurg; 1974 Jan; 40(1):65-75. PubMed ID: 4808487
    [No Abstract]   [Full Text] [Related]  

  • 4. Central nervous system lipid alterations in rats with experimental allergic encephalomyelitis and its suppression by immunosuppressive drugs.
    Roth GA; Monferran CG; Maggio B; Cumar FA
    Life Sci; 1982 Mar; 30(10):859-66. PubMed ID: 7200180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thymoquinone inhibits the activation of NF-kappaB in the brain and spinal cord of experimental autoimmune encephalomyelitis.
    Mohamed A; Afridi DM; Garani O; Tucci M
    Biomed Sci Instrum; 2005; 41():388-93. PubMed ID: 15850137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in brain and spinal cord water content during recurrent experimental autoimmune encephalomyelitis in female Lewis rats.
    Orr EL; Aschenbrenner JE; Oakford LX; Jackson FL; Stanley NC
    Mol Chem Neuropathol; 1994 Aug; 22(3):185-95. PubMed ID: 7993527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of experimental allergic encephalomyelitis on the intensity of phospholipid metabolism in the brain and spinal cord].
    Zuber VL; Taranova NP
    Vopr Med Khim; 1978; 24(3):322-6. PubMed ID: 664458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium distribution in experimental inflammation of brain and spinal cord.
    Levine S; Saltzman A; Katof B; Meister A; Cooper TB
    Prog Neuropsychopharmacol Biol Psychiatry; 1996 Aug; 20(6):1011-7. PubMed ID: 8888107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Cerebral gangliosides in dogs in experimental allergic encephalomyelitis].
    Kiroĭ RI; Mendzheritskiĭ AM; Vilkov GA
    Vopr Med Khim; 1982; 28(2):49-52. PubMed ID: 6281989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in phospholipid composition of the spinal cord in rabbits with allergic encephalomyelitis as an experimental model of multiple sclerosis.
    Revina ES; Gromova NV; Timoshina TE
    Bull Exp Biol Med; 2011 Dec; 152(2):224-7. PubMed ID: 22808466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allergic encephalomyelitis: preparation of the encephalitogenic basic protein from bovine brain.
    Oshiro Y; Eylar EH
    Arch Biochem Biophys; 1970 Jun; 138(2):392-6. PubMed ID: 5433575
    [No Abstract]   [Full Text] [Related]  

  • 12. Brain and spinal cord levels of histamine in Lewis rats with acute experimental autoimmune encephalomyelitis.
    Orr EL; Stanley NC
    J Neurochem; 1989 Jul; 53(1):111-8. PubMed ID: 2786054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volume regulatory loss of Na, Cl, and K from rat brain during acute hyponatremia.
    Melton JE; Patlak CS; Pettigrew KD; Cserr HF
    Am J Physiol; 1987 Apr; 252(4 Pt 2):F661-9. PubMed ID: 3565577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The possible anti-apoptotic and antioxidant effects of acetyl l-carnitine as an add-on therapy on a relapsing-remitting model of experimental autoimmune encephalomyelitis in rats.
    Zidan A; Hedya SE; Elfeky DM; Abdin AA
    Biomed Pharmacother; 2018 Jul; 103():1302-1311. PubMed ID: 29864912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-localization of secretoneurin immunoreactivity and macrophage infiltration in the lesions of experimental autoimmune encephalomyelitis.
    Storch MK; Fischer-Colbrie R; Smith T; Rinner WA; Hickey WF; Cuzner ML; Winkler H; Lassmann H
    Neuroscience; 1996 Apr; 71(3):885-93. PubMed ID: 8867056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased lead uptake by spinal cord during experimental allergic encephalomyelitis in rats.
    Mandybur TL; Cooper GP
    Toxicol Appl Pharmacol; 1979 Aug; 50(1):163-5. PubMed ID: 494295
    [No Abstract]   [Full Text] [Related]  

  • 17. Elevated levels of nerve growth factor in the thalamus and spinal cord of rats affected by experimental allergic encephalomyelitis.
    Micera A; De Simone R; Aloe L
    Arch Ital Biol; 1995 Mar; 133(2):131-42. PubMed ID: 7625888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chloride co-transporters, NKCC1 and KCC2, in experimental autoimmune encephalomyelitis (EAE).
    Yousuf MS; Zubkow K; Tenorio G; Kerr B
    Neuroscience; 2017 Mar; 344():178-186. PubMed ID: 28057537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrolyte distribution in toad sciatic nerve and spinal cord.
    Astrada CA; Haggi E; Hliba E; Izquierdo I
    Brain Res; 1975 Nov; 98(2):279-89. PubMed ID: 810222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain water and electrolyte distribution during the inhalation of halothane.
    Schettini A; Furniss WW
    Br J Anaesth; 1979 Dec; 51(12):1117-24. PubMed ID: 526377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.