These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 598499)
1. The hydrophobic heart of rhodopsin revealed by an infrared 1H-2H exchange study. Osborne HB FEBS Lett; 1977 Dec; 84(2):217-20. PubMed ID: 598499 [No Abstract] [Full Text] [Related]
2. The conformation of membrane-bound and detergent-solubilised bovine rhodopsin. A comparative hydrogen-isotope exchange study. Osborne HB; Nabedryk-Viala E Eur J Biochem; 1978 Aug; 89(1):81-8. PubMed ID: 699918 [TBL] [Abstract][Full Text] [Related]
3. Orientation of rhodopsin alpha-helices in in retinal rod outer segment membranes studied by infrared linear dichroism. Michel-Villaz M; Saibil HR; Chabre M Proc Natl Acad Sci U S A; 1979 Sep; 76(9):4405-8. PubMed ID: 291972 [TBL] [Abstract][Full Text] [Related]
4. [Study of heat denaturation of rhodopsin in the external retinal rod segments of cattle by infrared spectroscopy]. Shnyrov VL; Berman AL; Lazarev IuA Biofizika; 1979; 24(4):752-4. PubMed ID: 476183 [No Abstract] [Full Text] [Related]
5. Fourier transform infrared difference spectra of intermediates in rhodopsin bleaching. Rothschild KJ; Cantore WA; Marrero H Science; 1983 Mar; 219(4590):1333-5. PubMed ID: 6828860 [TBL] [Abstract][Full Text] [Related]
6. Fourier transform infrared spectroscopic investigation of rhodopsin structure and its comparison with bacteriorhodopsin. Haris PI; Coke M; Chapman D Biochim Biophys Acta; 1989 Apr; 995(2):160-7. PubMed ID: 2539198 [TBL] [Abstract][Full Text] [Related]
7. A spectroscopic study of rhodopsin alpha-helix orientation. Rothschild KJ; Sanches R; Hsiao TL; Clark NA Biophys J; 1980 Jul; 31(1):53-64. PubMed ID: 7272433 [TBL] [Abstract][Full Text] [Related]
8. Photoexcitation of rhodopsin: conformation changes in the chromophore, protein and associated lipids as determined by FTIR difference spectroscopy. DeGrip WJ; Gray D; Gillespie J; Bovee PH; Van den Berg EM; Lugtenburg J; Rothschild KJ Photochem Photobiol; 1988 Oct; 48(4):497-504. PubMed ID: 3231685 [No Abstract] [Full Text] [Related]
9. Carboxyl group involvement in the meta I and meta II stages in rhodopsin bleaching. A Fourier transform infrared spectroscopic study. de Grip WJ; Gillespie J; Rothschild KJ Biochim Biophys Acta; 1985 Aug; 809(1):97-106. PubMed ID: 2992584 [TBL] [Abstract][Full Text] [Related]
10. Evidence for rhodopsin refolding during the decay of Meta II. Rothschild KJ; Gillespie J; DeGrip WJ Biophys J; 1987 Feb; 51(2):345-50. PubMed ID: 3828465 [TBL] [Abstract][Full Text] [Related]
11. Resonance Raman spectroscopy of rhodopsin in retinal disk membranes. Oseroff AR; Callender RH Biochemistry; 1974 Sep; 13(20):4243-8. PubMed ID: 4472288 [No Abstract] [Full Text] [Related]
12. Rhodopsin-lumirhodopsin phototransition of bovine rhodopsin investigated by Fourier transform infrared difference spectroscopy. Ganter UM; Gärtner W; Siebert F Biochemistry; 1988 Sep; 27(19):7480-8. PubMed ID: 3207686 [TBL] [Abstract][Full Text] [Related]
13. Neutron diffraction analysis of the structure of retinal photoreceptor membranes and rhodopsin. Yeager MJ Brookhaven Symp Biol; 1976 May; (27):III3-III36. PubMed ID: 963574 [No Abstract] [Full Text] [Related]
14. A vibrational analysis of rhodopsin and bacteriorhodopsin chromophore analogues: resonance Raman and infrared spectroscopy of chemically modified retinals and Schiff bases. Cookingham RE; Lewis A; Lemley AT Biochemistry; 1978 Oct; 17(22):4699-711. PubMed ID: 728379 [TBL] [Abstract][Full Text] [Related]
15. Fourier-transform infrared difference spectroscopy of rhodopsin and its photoproducts at low temperature. Bagley KA; Balogh-Nair V; Croteau AA; Dollinger G; Ebrey TG; Eisenstein L; Hong MK; Nakanishi K; Vittitow J Biochemistry; 1985 Oct; 24(22):6055-71. PubMed ID: 4084506 [TBL] [Abstract][Full Text] [Related]
16. Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange. Deng H; Huang L; Callender R; Ebrey T Biophys J; 1994 Apr; 66(4):1129-36. PubMed ID: 8038384 [TBL] [Abstract][Full Text] [Related]
17. A comparative study of the infrared difference spectra for octopus and bovine rhodopsins and their bathorhodopsin photointermediates. Bagley KA; Eisenstein L; Ebrey TG; Tsuda M Biochemistry; 1989 Apr; 28(8):3366-73. PubMed ID: 2742842 [TBL] [Abstract][Full Text] [Related]
18. Fourier-transform infrared spectroscopy applied to rhodopsin. The problem of the protonation state of the retinylidene Schiff base re-investigated. Siebert F; Mäntele W; Gerwert K Eur J Biochem; 1983 Oct; 136(1):119-27. PubMed ID: 6311543 [TBL] [Abstract][Full Text] [Related]
19. Fourier transform infrared study of photoreceptor membrane. I. Group assignments based on rhodopsin delipidation and reconstitution. Rothschild KJ; DeGrip WJ; Sanches R Biochim Biophys Acta; 1980 Mar; 596(3):338-51. PubMed ID: 7362819 [TBL] [Abstract][Full Text] [Related]
20. Interaction of rhodopsin with two unsaturated phosphatidylcholines: a deuterium nuclear magnetic resonance study. Deese AJ; Dratz EA; Dahlquist FW; Paddy MR Biochemistry; 1981 Oct; 20(22):6420-7. PubMed ID: 7306517 [No Abstract] [Full Text] [Related] [Next] [New Search]