These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 5987141)

  • 21. CONGENITAL CATARACT IN THE LIGHT OF STUDIES ON GLUTATHIONE AND MICROELECTROPHORESIS OF THE SOLUBLE PROTEINS OF THE LENS.
    ZYGULSKA-MACH H
    Acta Med Pol; 1964; 5():421-38. PubMed ID: 14253062
    [No Abstract]   [Full Text] [Related]  

  • 22. Reduced, oxidized, and protein-bound glutathione concentrations in normal and cataractous lenses in the dog.
    Gelatt KN; Bruss M; DeCostanza SM; Noonan NE; Das ND; Wolf ED
    Am J Vet Res; 1982 Jul; 43(7):1215-7. PubMed ID: 7103204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Free and protein-bound glutathione in normal and cataractous human lenses.
    Harding JJ
    Biochem J; 1970 May; 117(5):957-60. PubMed ID: 5451916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Fractionation by ultracentrifugation and electrophoresis of the soluble proteins of the crystalline lens during ontogenesis].
    Negroni L
    Boll Soc Ital Biol Sper; 1966 May; 42(10):571-5. PubMed ID: 5916062
    [No Abstract]   [Full Text] [Related]  

  • 25. [The separation of soluble proteins of the crystalline lens by means of filtration on sephadex gel].
    Bonavolontà A; Loffredo A; Sborgia G
    Ann Ottalmol Clin Ocul; 1966 Dec; 92(12):1236-44. PubMed ID: 5999499
    [No Abstract]   [Full Text] [Related]  

  • 26. Changes in erythrocyte glucose-6-phosphate dehydrogenase (G6PD) and reduced glutathione (GSH) activities in the development of senile and diabetic cataracts.
    Chandrasena LG; De Silva LD; De Silva KI; Dissanayaka P; Peiris H
    Southeast Asian J Trop Med Public Health; 2008 Jul; 39(4):731-6. PubMed ID: 19058613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrophoretograms of soluble proteins of lens in different species.
    Naik VV; Saha N; Banerjee B
    J Exp Med Sci; 1966; 10(1):1-4. PubMed ID: 5965045
    [No Abstract]   [Full Text] [Related]  

  • 28. [Protein variations in the normal crystalline lens and brown cataract].
    Cernea P; Tănăsescu D
    Rev Chir Oncol Radiol O R L Oftalmol Stomatol Ser Oftalmol; 1983; 27(2):95-9. PubMed ID: 6227047
    [No Abstract]   [Full Text] [Related]  

  • 29. Human diabetic cataract: role of lipid peroxidation.
    Altomare E; Vendemiale G; Grattagliano I; Angelini P; Micelli-Ferrari T; Cardia L
    Diabete Metab; 1995 Jun; 21(3):173-9. PubMed ID: 7556808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An impediment to glutathione diffusion in older normal human lenses: a possible precondition for nuclear cataract.
    Sweeney MH; Truscott RJ
    Exp Eye Res; 1998 Nov; 67(5):587-95. PubMed ID: 9878221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Parameters of lens protein fluorescence quenching in early stages of hereditary cataract].
    Aĭtmagambetov MT; Deev AI; Kostenko ER; Vladimirov IuA
    Biull Eksp Biol Med; 1991 May; 111(5):551-3. PubMed ID: 1878580
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in albumoid protein during cataract formation.
    Alao JF; Majekodunmi AA
    Afr J Med Med Sci; 1984; 13(3-4):117-26. PubMed ID: 6099971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alpha, beta, and gamma crystallins in the ocular lens of rabbits: preparation and partial characterization.
    Mason CV; Hines MC
    Invest Ophthalmol; 1966 Dec; 5(6):601-9. PubMed ID: 5927447
    [No Abstract]   [Full Text] [Related]  

  • 34. [Blood and lens lipid status of senile cataract patients].
    Arkhangel'skaia EP; Valeeva LA; Ishigov IA
    Oftalmol Zh; 1982; 37(7):412-4. PubMed ID: 7162722
    [No Abstract]   [Full Text] [Related]  

  • 35. Protein carbonylation and glycation in human lenses.
    Balog Z; Klepac R; Sikić J; Jukić-Lesina T
    Coll Antropol; 2001; 25 Suppl():145-8. PubMed ID: 11817006
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Pathogenesis of the diabetic cataract].
    Vadot E; Guibal JP
    Bull Soc Ophtalmol Fr; 1982 Dec; 82(12):1513-4. PubMed ID: 7184648
    [No Abstract]   [Full Text] [Related]  

  • 37. [Changes in concentration of glutathione, ascorbic acid and amino acids with sulfhydryl groups in experimental cataracts].
    Bernat R; Bombicki K
    Acta Physiol Pol; 1968; 19(2):205-15. PubMed ID: 5650281
    [No Abstract]   [Full Text] [Related]  

  • 38. Methylglyoxal-derived modifications in lens aging and cataract formation.
    Shamsi FA; Lin K; Sady C; Nagaraj RH
    Invest Ophthalmol Vis Sci; 1998 Nov; 39(12):2355-64. PubMed ID: 9804144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Biochemical studies on human cataract lens. II. Opacity-related changes of cations, ATP and GSH in various types of human senile cataracts].
    Iwata S; Takehana M
    Yakugaku Zasshi; 1982 Oct; 102(10):940-5. PubMed ID: 7166727
    [No Abstract]   [Full Text] [Related]  

  • 40. [The lens nucleus. I. Water content].
    Nordmann J
    Arch Ophtalmol Rev Gen Ophtalmol; 1973 Feb; 33(2):81-6. PubMed ID: 4268756
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.