These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 5987785)

  • 1. [On the activity of phosphorylase, the rate of glycolysis and the behavior of phosphocreatines and orthophosphates in the myocardium of the guinea pig in circulatory arrest].
    Krause EG; Wollenberger A
    Acta Biol Med Ger; 1966; 16(6):595-605. PubMed ID: 5987785
    [No Abstract]   [Full Text] [Related]  

  • 2. [Biochemical changes in heart arrest].
    Krause EG
    Z Gesamte Inn Med; 1969 Jan; 24(2):Suppl:19-24. PubMed ID: 5795691
    [No Abstract]   [Full Text] [Related]  

  • 3. [Biochemical changes in cardiac arrest].
    Krause EG
    Z Gesamte Inn Med; 1969 Jan; 24(1):Suppl:19-24. PubMed ID: 4248367
    [No Abstract]   [Full Text] [Related]  

  • 4. [The utility of aerobic glycolysis in the guinea pig heart].
    Muller-Ruchholtz ER; Lochner W
    Pflugers Arch; 1969; 312(1):R11. PubMed ID: 5390171
    [No Abstract]   [Full Text] [Related]  

  • 5. [Metabolic changes in the myocardium under the conditions of experimental ventricular fibrillation during extracorporeal circulation in the dog].
    Stadelmann G; Kühn I; Djoulfajan O; Holec V; Fedelesova M; Ziegelhöffer A
    Thoraxchir Vask Chir; 1967 Aug; 15(4):447-56. PubMed ID: 5244171
    [No Abstract]   [Full Text] [Related]  

  • 6. Metabolic control characteristics of the acutely ischemic myocardium.
    Wollenberger A; Krause EG
    Am J Cardiol; 1968 Sep; 22(3):349-59. PubMed ID: 4875626
    [No Abstract]   [Full Text] [Related]  

  • 7. [Changes in the content of some glycolysis products in the frog myocardium at different phases of the cardiac cycle].
    Krauze EG; Beyerdorfer I; Wollenberger A; Bogdanova EV; Babskiĭ EB
    Dokl Akad Nauk SSSR; 1971 Aug; 199(5):1212-5. PubMed ID: 4331288
    [No Abstract]   [Full Text] [Related]  

  • 8. [Energy-rich phosphate compounds in the myocardium under the influence of adrenaline, noradrenaline and isoproterenol].
    Krautzberger W; Kammermeier H; Kammermeier B
    Pflugers Arch; 1969; 312(1):R6-7. PubMed ID: 5390286
    [No Abstract]   [Full Text] [Related]  

  • 9. The action of imidazole on the effects of methyl-xanthines and catecholamines on cardiac contraction and phosphorylase activity.
    Kukovetz WR; Pöch G
    J Pharmacol Exp Ther; 1967 Jun; 156(3):514-21. PubMed ID: 6028879
    [No Abstract]   [Full Text] [Related]  

  • 10. Regulation of glycolysis in the ischemic and the anoxic myocardium.
    Kübler W; Spieckermann PG
    J Mol Cell Cardiol; 1970 Dec; 1(4):351-77. PubMed ID: 4937794
    [No Abstract]   [Full Text] [Related]  

  • 11. [Limits of resuscitation in conformity with physiological and biochemical criteria].
    Kübler W
    Dtsch Med Wochenschr; 1969 May; 94(22):1157-60 passim. PubMed ID: 5768541
    [No Abstract]   [Full Text] [Related]  

  • 12. [Animal experiment for the detection of metabolic changes after iron uptake].
    Lujf A; Moser K; Schnack H
    Z Gesamte Exp Med Einschl Exp Chir; 1966; 140(4):287-93. PubMed ID: 5991290
    [No Abstract]   [Full Text] [Related]  

  • 13. [Phosphate compounds in isolated, perfused hearts during pH variation due to changes in extracellular PCO2 and bicarbonate].
    Kammermeier H; Rudroff W; Krautzberger W; Gerlach E
    Pflugers Arch; 1969; 312(1):R10-1. PubMed ID: 5390157
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of epinephrine on cardiac cyclic 3',5'-AMP, phosphorylase kinase, and phosphorylase.
    Namm DH; Mayer SE
    Mol Pharmacol; 1968 Jan; 4(1):61-9. PubMed ID: 4384397
    [No Abstract]   [Full Text] [Related]  

  • 15. [Degradation of purine nucleotides and carbohydrates in the KC1-arrested rabbit heart and ischemic dog heart].
    Busch EW; Gercken G
    Hoppe Seylers Z Physiol Chem; 1969 Feb; 350(2):105-10. PubMed ID: 5776496
    [No Abstract]   [Full Text] [Related]  

  • 16. High-energy myocardial phosphates during resuscitation.
    Dolata W; Sapota J; Debowy J; Dynarowicz I; Lój W
    Pol Med J; 1970; 9(5):1183-8. PubMed ID: 5510285
    [No Abstract]   [Full Text] [Related]  

  • 17. [Histochemical demonstration of phosphorylase activity in the myocardium of laboratory animals after the standstill of the heart due to ischemia].
    Ebner E; Schulze W
    Gegenbaurs Morphol Jahrb; 1967; 111(1):91-8. PubMed ID: 5599537
    [No Abstract]   [Full Text] [Related]  

  • 18. [Reanimation of warm-blooded heart after ischemia from the functional and metabolic viewpoint. Annual experiments].
    Merguet H
    Ergeb Chir Orthop; 1971; 55():72-122. PubMed ID: 5098304
    [No Abstract]   [Full Text] [Related]  

  • 19. Glycolytic and tricarboxylic acid cycle intermediates during cardiac arrest and recovery in eu-, hyper- and hypothyroid rats.
    Fath PA; Kako KJ
    J Mol Cell Cardiol; 1973 Aug; 5(4):359-73. PubMed ID: 4355338
    [No Abstract]   [Full Text] [Related]  

  • 20. The role of potassium and calcium ions in the effect of epinephrine on cardiac cyclic adenosine 3',5'-monophosphate, phosphorylase kinase, and phosphorylase.
    Namm DH; Mayer SE; Maltbie M
    Mol Pharmacol; 1968 Sep; 4(5):522-30. PubMed ID: 4301278
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.