These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 5987895)

  • 1. Positive and negative inotropic effects by constant electric currents or current pulses applied during the cardiac action potential.
    Heppner RL; Weidmann S; Wood EH
    Helv Physiol Pharmacol Acta; 1966 Nov; 68():C94-6. PubMed ID: 5987895
    [No Abstract]   [Full Text] [Related]  

  • 2. Shock-induced transmembrane potential fields in a model of cardiac microstructure.
    Trew M; Sands GB
    J Cardiovasc Electrophysiol; 2005 Sep; 16(9):1024. PubMed ID: 16174028
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of hyperpolarizing current on cardiac Purkinje fibres in K-enriched Tyrode.
    van der Walt JJ; Carmeliet EE
    Arch Int Physiol Biochim; 1967 Feb; 75(1):139-41. PubMed ID: 4168896
    [No Abstract]   [Full Text] [Related]  

  • 4. Inotropic effects of electric currents. I. Positive and negative effects of constant electric currents or current pulses applied during cardiac action potentials. II. Hypotheses: calcium movements, excitation-contraction coupling and inotropic effects.
    Wood EH; Heppner RL; Weidmann S
    Circ Res; 1969 Mar; 24(3):409-45. PubMed ID: 5766519
    [No Abstract]   [Full Text] [Related]  

  • 5. Analysis of the effects of vagal stimulation on the sinus venous of the toad.
    Edwards FR; Bramich NJ; Hirst GD
    Philos Trans R Soc Lond B Biol Sci; 1993 Jul; 341(1296):149-62. PubMed ID: 8104349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Physiologic principles of electrical excitability of the heart].
    Schubert E
    Z Gesamte Inn Med; 1969 Jan; 24(1):1-6. PubMed ID: 5784083
    [No Abstract]   [Full Text] [Related]  

  • 7. Stretch-induced voltage changes in the isolated beating heart: importance of the timing of stretch and implications for stretch-activated ion channels.
    Zabel M; Koller BS; Sachs F; Franz MR
    Cardiovasc Res; 1996 Jul; 32(1):120-30. PubMed ID: 8776409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Duration of the action potential as a function of the membrane potential in cardiac Purkinje fibres.
    Carmeliet EE; Van der Walt JJ
    J Physiol; 1968 Feb; 194(2):88P. PubMed ID: 5639390
    [No Abstract]   [Full Text] [Related]  

  • 9. Parameter estimation in cardiac ionic models.
    Dokos S; Lovell NH
    Prog Biophys Mol Biol; 2004; 85(2-3):407-31. PubMed ID: 15142755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane currents in mammalian ventricular heart muscle fibres using a "voltage-clamp" technique.
    Giebisch G; Weidmann S
    Helv Physiol Pharmacol Acta; 1967; 25(2):CR189-90. PubMed ID: 5592857
    [No Abstract]   [Full Text] [Related]  

  • 11. The effect of the cut surface during electrical stimulation of a cardiac wedge preparation.
    Roth BJ; Patel SG; Murdick RA
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1187-90. PubMed ID: 16761846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of dehydrobenzperidol (Droperidol) on electric processes in the sheep Purkinje fibers].
    Hauswirth O
    Helv Physiol Pharmacol Acta; 1967; 25(4):CR420+. PubMed ID: 5586886
    [No Abstract]   [Full Text] [Related]  

  • 13. Hysteresis phenomena in excitable cardiac tissues.
    Lorente P; Davidenko J
    Ann N Y Acad Sci; 1990; 591():109-27. PubMed ID: 2375573
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of pH on ionic currents underlying pace-maker activity in cardiac Purkinje fibres.
    Brown RH; Noble D
    J Physiol; 1972 Jul; 224(1):38P-39P. PubMed ID: 5039997
    [No Abstract]   [Full Text] [Related]  

  • 15. The effects of Na-Ca exchange on membrane currents in sheep cardiac Purkinje fibers.
    Lederer WJ; Sheu SS; Vaughan-Jones RD; Eisner DA
    Soc Gen Physiol Ser; 1984; 38():373-80. PubMed ID: 6695211
    [No Abstract]   [Full Text] [Related]  

  • 16. Intramural measurement of transmembrane potential in the isolated pig heart: validation of a novel technique.
    Caldwell BJ; Legrice IJ; Hooks DA; Tai DC; Pullan AJ; Smaill BH
    J Cardiovasc Electrophysiol; 2005 Sep; 16(9):1001-10. PubMed ID: 16174023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model study of extracellular stimulation of cardiac cells.
    Leon LJ; Roberge FA
    IEEE Trans Biomed Eng; 1993 Dec; 40(12):1307-19. PubMed ID: 8125506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-to-cell electrical interactions during early and late repolarization.
    Spitzer KW; Pollard AE; Yang L; Zaniboni M; Cordeiro JM; Huelsing DJ
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S8-S14. PubMed ID: 16686687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basic concepts in cellular cardiac electrophysiology: Part I: Ion channels, membrane currents, and the action potential.
    Whalley DW; Wendt DJ; Grant AO
    Pacing Clin Electrophysiol; 1995 Aug; 18(8):1556-74. PubMed ID: 7479177
    [No Abstract]   [Full Text] [Related]  

  • 20. Interdependence of virtual electrode polarization and conduction velocity during premature stimulation.
    Gray RA; Iyer A; Berenfeld O; Pertsov AM; Hyatt CJ
    J Electrocardiol; 2006 Oct; 39(4 Suppl):S13-8. PubMed ID: 17015062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.