These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 5991629)

  • 21. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1.
    Jiao Y; Kappler A; Croal LR; Newman DK
    Appl Environ Microbiol; 2005 Aug; 71(8):4487-96. PubMed ID: 16085840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystallization and preliminary X-ray studies on the reaction center-light-harvesting 1 core complex from Rhodopseudomonas viridis.
    Saijo S; Sato T; Kumasaka T; Tanaka N; Harata K; Odahara T
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Jan; 61(Pt 1):83-6. PubMed ID: 16508098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The structural organization of the antenna chromophore protein complexes in membranes of the photosynthetic bacterium Rhodopseudomonas viridis.
    Klevanik AV
    Membr Cell Biol; 1998; 12(1):9-26. PubMed ID: 9829255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reductive, coenzyme A-mediated pathway for 3-chlorobenzoate degradation in the phototrophic bacterium Rhodopseudomonas palustris.
    Egland PG; Gibson J; Harwood CS
    Appl Environ Microbiol; 2001 Mar; 67(3):1396-9. PubMed ID: 11229940
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rhodopseudomonas marina sp. nov., a New Marine Phototrophic Purple Bacterium.
    Imhoff JF
    Syst Appl Microbiol; 1983; 4(4):512-21. PubMed ID: 23194809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural analysis of photosynthetic membranes by cryo-electron tomography of intact Rhodopseudomonas viridis cells.
    Konorty M; Kahana N; Linaroudis A; Minsky A; Medalia O
    J Struct Biol; 2008 Mar; 161(3):393-400. PubMed ID: 17977019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anaerobic utilization of phenanthrene by Rhodopseudomonas palustris.
    Zhao L; Zhao C; Han D; Yang S; Chen S; Yu CP
    Biotechnol Lett; 2011 Nov; 33(11):2135-40. PubMed ID: 21748363
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytochrome P450 enzymes from the metabolically diverse bacterium Rhodopseudomonas palustris.
    Bell SG; Hoskins N; Xu F; Caprotti D; Rao Z; Wong LL
    Biochem Biophys Res Commun; 2006 Mar; 342(1):191-6. PubMed ID: 16472768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Photosynthetic Reaction Center from the Purple Bacterium Rhodopseudomonas viridis.
    Deisenhofer J; Michel H
    Science; 1989 Sep; 245(4925):1463-73. PubMed ID: 17776797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phototrophic transformation of phenol to 4-hydroxyphenylacetate by Rhodopseudomonas palustris.
    Noh U; Heck S; Giffhorn F; Kohring GW
    Appl Microbiol Biotechnol; 2002 May; 58(6):830-5. PubMed ID: 12021805
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Interaction of anoxygenic phototrophic Rhodopseudomonas sp. with kaolinite ].
    Kompantseva EI; Naĭmark EB; Boeva NM; Zhukhlistov AP; Novikov VM; Nikitina NS
    Mikrobiologiia; 2013; 82(3):323-34. PubMed ID: 24466734
    [No Abstract]   [Full Text] [Related]  

  • 32. The role of the γ subunit in the photosystem of the lowest-energy phototrophs.
    Namoon D; Rudling NM; Canniffe DP
    Biochem J; 2022 Dec; 479(24):2449-2463. PubMed ID: 36534468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Salt- and pH-Dependent Thermal Stability of Photocomplexes from Extremophilic Bacteriochlorophyll
    Kimura Y; Nakata K; Nojima S; Takenaka S; Madigan MT; Wang-Otomo ZY
    Microorganisms; 2022 May; 10(5):. PubMed ID: 35630403
    [No Abstract]   [Full Text] [Related]  

  • 34. Genome Sequence of the Alphaproteobacterium Blastochloris sulfoviridis DSM 729, Which Requires Reduced Sulfur as a Growth Supplement and Contains Bacteriochlorophyll
    Kyndt JA; Montano Salama D; Meyer TE
    Microbiol Resour Announc; 2020 Apr; 9(18):. PubMed ID: 32354981
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A paralog of a bacteriochlorophyll biosynthesis enzyme catalyzes the formation of 1,2-dihydrocarotenoids in green sulfur bacteria.
    Canniffe DP; Thweatt JL; Gomez Maqueo Chew A; Hunter CN; Bryant DA
    J Biol Chem; 2018 Sep; 293(39):15233-15242. PubMed ID: 30126840
    [No Abstract]   [Full Text] [Related]  

  • 36. Revised Genome Sequence of the Purple Photosynthetic Bacterium Blastochloris viridis.
    Liu LN; Faulkner M; Liu X; Huang F; Darby AC; Hall N
    Genome Announc; 2016 Jan; 4(1):. PubMed ID: 26798090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Complete Genome Sequence of the Bacteriochlorophyll b-Producing Photosynthetic Bacterium Blastochloris viridis.
    Tsukatani Y; Hirose Y; Harada J; Misawa N; Mori K; Inoue K; Tamiaki H
    Genome Announc; 2015 Sep; 3(5):. PubMed ID: 26337894
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineered biosynthesis of bacteriochlorophyll b in Rhodobacter sphaeroides.
    Canniffe DP; Hunter CN
    Biochim Biophys Acta; 2014 Oct; 1837(10):1611-6. PubMed ID: 25058304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Forty-five years of developmental biology of photosynthetic bacteria.
    Gerhart D
    Photosynth Res; 1996 Jun; 48(3):325-52. PubMed ID: 24271475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The structure of the photoreceptor unit of Rhodopseudomonas viridis.
    Stark W; Kühlbrandt W; Wildhaber I; Wehrli E; Mühlethaler K
    EMBO J; 1984 Apr; 3(4):777-83. PubMed ID: 16453515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.