These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 599742)

  • 41. The effects of sarcomere length and Ca++ on force and velocity of shortening in cardiac muscle.
    ter Keurs HE; Bucx JJ; de Tombe PP; Backx P; Iwazumi T
    Adv Exp Med Biol; 1988; 226():581-93. PubMed ID: 3407533
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of preload and Ca++-ions on the time-course of the isometric force and on the force-velocity relation: is Vmax dependent on the number of activated cross-bridges?
    Gülch RW
    Basic Res Cardiol; 1977; 72(2-3):102-8. PubMed ID: 871297
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The dependence of force and shortening velocity on substrate concentration in skinned muscle fibres from Rana temporaria.
    Ferenczi MA; Goldman YE; Simmons RM
    J Physiol; 1984 May; 350():519-43. PubMed ID: 6611405
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of stretching on the elastic characteristics and the contractile component of frog striated muscle.
    Cavagna GA; Citterio G
    J Physiol; 1974 May; 239(1):1-14. PubMed ID: 4368635
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Non-hyperbolic force-velocity relationship in single muscle fibres.
    Edman KA; Mulieri LA; Scubon-Mulieri B
    Acta Physiol Scand; 1976 Oct; 98(2):143-56. PubMed ID: 1086583
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The compliance of contracting skeletal muscle.
    Bressler BH; Clinch NF
    J Physiol; 1974 Mar; 237(3):477-93. PubMed ID: 4207658
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The force-velocity relation and stepwise shortening in cardiac muscle.
    Vassallo DV; Pollack GH
    Circ Res; 1982 Jul; 51(1):37-42. PubMed ID: 7083489
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The high-force region of the force-velocity relation in frog skinned muscle fibres.
    Lou F; Sun YB
    Acta Physiol Scand; 1993 Jul; 148(3):243-52. PubMed ID: 8213180
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tension as a function of sarcomere length and velocity of shortening in single skeletal muscle fibres of the frog.
    Morgan DL; Claflin DR; Julian FJ
    J Physiol; 1991 Sep; 441():719-32. PubMed ID: 1816391
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Relationship between the amplitude of myocardial contractions in frogs and the frequency of electrical stimulation. Role of external and intracellular calcium in the coupling of excitation and contraction].
    Khodorov BI; Mukumov MR; Kitaĭgorodskaia GM; Khodorova AB
    Biofizika; 1977; 22(5):901-9. PubMed ID: 911912
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibres of the frog.
    Lüttgau HC; Spiecker W
    J Physiol; 1979 Nov; 296():411-29. PubMed ID: 316821
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Isometric relaxation of rat myocardium at end-systolic fiber length.
    Wiegner AW; Bing SH
    Circ Res; 1978 Dec; 43(6):865-9. PubMed ID: 709748
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Force-velocity relation and stiffness in frog single muscle fibres during the rise of tension in an isometric tetanus.
    Lorenzini CA; Colomo F; Lombardi V
    Adv Exp Med Biol; 1984; 170():757-64. PubMed ID: 6611041
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of 'B-b' knob-hole interactions in fibrin binding to adsorbed fibrinogen.
    Geer CB; Tripathy A; Schoenfisch MH; Lord ST; Gorkun OV
    J Thromb Haemost; 2007 Dec; 5(12):2344-51. PubMed ID: 17892530
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamics of contraction with special reference to calcium.
    Mashima H
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():149-57. PubMed ID: 1031923
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The instantaneous force-velocity relationship as an index of the contractile state in cardiac muscle.
    Edman KA
    Basic Res Cardiol; 1977; 72(2-3):94-101. PubMed ID: 860992
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The force-velocity relationship at negative loads (assisted shortening) studied in isolated, intact muscle fibres of the frog.
    Edman KA
    Acta Physiol (Oxf); 2014 Aug; 211(4):609-16. PubMed ID: 24888542
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of rapid shortening on rate of force regeneration and myoplasmic [Ca2+] in intact frog skeletal muscle fibres.
    Vandenboom R; Claflin DR; Julian FJ
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):171-80. PubMed ID: 9679172
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lack of effect of isoproterenol on unloaded velocity of sarcomere shortening in rat cardiac trabeculae.
    de Tombe PP; ter Keurs HE
    Circ Res; 1991 Feb; 68(2):382-91. PubMed ID: 1825034
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Double-hyperbolic nature of the force-velocity relation in frog skeletal muscle.
    Edman KA
    Adv Exp Med Biol; 1988; 226():643-52. PubMed ID: 3261494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.