These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 6002773)

  • 1. [Carbon and energy sources of biosynthesis in sulfate reducing bacteria].
    Sorokin IuI
    Mikrobiologiia; 1966; 35(5):761-6. PubMed ID: 6002773
    [No Abstract]   [Full Text] [Related]  

  • 2. [Study on constructive metabolism of sulphate reducing bacteria using C-14].
    Sorokin IuI
    Mikrobiologiia; 1966; 35(6):967-77. PubMed ID: 6003015
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of organic substrate concentration on activity for microbiological reduction of sulfates.
    Domka F; Szulxzyński M
    Acta Microbiol Pol; 1979; 28(3):237-44. PubMed ID: 92173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth of desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria.
    Bryant MP; Campbell LL; Reddy CA; Crabill MR
    Appl Environ Microbiol; 1977 May; 33(5):1162-9. PubMed ID: 879775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanol utilization by sulfate-reducing bacteria: an experimental and modeling study.
    Nagpal S; Chuichulcherm S; Livingston A; Peeva L
    Biotechnol Bioeng; 2000 Dec; 70(5):533-43. PubMed ID: 11042550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Green photosynthetic bacteria isolated from the Sernoje lake].
    Trotsenko IuA
    Mikrobiologiia; 1966; 35(6):1087-93. PubMed ID: 6003011
    [No Abstract]   [Full Text] [Related]  

  • 7. [Study of the metabolism of dicarboxylic acids and of pyruvate in sulfo-reducing bacteria. I. Study of the enzyme oxidation of fumarate in acetate].
    Hatchikian EC; Le Gall J
    Ann Inst Pasteur (Paris); 1970 Feb; 118(2):125-42. PubMed ID: 4392009
    [No Abstract]   [Full Text] [Related]  

  • 8. Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source.
    Badziong W; Thauer RK; Zeikus JG
    Arch Microbiol; 1978 Jan; 116(1):41-9. PubMed ID: 623496
    [No Abstract]   [Full Text] [Related]  

  • 9. Aerobic metabolism of carbon reserves by the "obligate anaerobe" Desulfovibrio gigas.
    Santos H; Fareleira P; Xavier AV; Chen L; Liu MY; LeGall J
    Biochem Biophys Res Commun; 1993 Sep; 195(2):551-7. PubMed ID: 8373395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP and acetylene-reducing activity of a sulfate-reducing bacterium.
    Sekiguchi T; Noguchi A; Nosoh Y
    Can J Microbiol; 1977 May; 23(5):567-72. PubMed ID: 871967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microcalorimetric studies of the growth of sulfate-reducing bacteria: energetics of Desulfovibrio vulgaris growth.
    Traore AS; Hatchikian CE; Belaich JP; Le Gall J
    J Bacteriol; 1981 Jan; 145(1):191-9. PubMed ID: 7462143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of fermentative acidogenic bacteria and sulfate-reducing bacteria to lactate degradation and sulfate reduction.
    Zhao Y; Ren N; Wang A
    Chemosphere; 2008 May; 72(2):233-42. PubMed ID: 18331751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the concentration of available carbon compounds on the microbial reduction of sulphates.
    Domka F; Gasiorek J
    Acta Microbiol Pol B; 1975; 7(2):97-101. PubMed ID: 241212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on dissimilatory reduction of sulphates.
    Domka F; Stawicki S; Szulczyński M
    Acta Microbiol Pol; 1979; 28(1):79-84. PubMed ID: 87119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. II. Inhibition experiments.
    Cappenberg TE
    Antonie Van Leeuwenhoek; 1974; 40(2):297-306. PubMed ID: 4365468
    [No Abstract]   [Full Text] [Related]  

  • 16. ATP generation by electron transport in Desulfovibrio desulfuricans.
    Vosjan JH
    Antonie Van Leeuwenhoek; 1970; 36(4):584-6. PubMed ID: 5312617
    [No Abstract]   [Full Text] [Related]  

  • 17. Sulfate-reducing bacteria in the periodontal pocket.
    van der Hoeven JS; van den Kieboom CW; Schaeken MJ
    Oral Microbiol Immunol; 1995 Oct; 10(5):288-90. PubMed ID: 8596671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugar utilization in the hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324: starch degradation to acetate and CO2 via a modified Embden-Meyerhof pathway and acetyl-CoA synthetase (ADP-forming).
    Labes A; Schönheit P
    Arch Microbiol; 2001 Nov; 176(5):329-38. PubMed ID: 11702074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy-coupling mechanisms in chemolithotrophic bacteria.
    Peck HD
    Annu Rev Microbiol; 1968; 22():489-518. PubMed ID: 4972376
    [No Abstract]   [Full Text] [Related]  

  • 20. Pyruvate-supported acetylene and sulfate reduction by cell-free extracts of Desulfovibrio desulfricans.
    Sekiguchi T; Noso Y
    Biochem Biophys Res Commun; 1973 Mar; 51(2):331-5. PubMed ID: 4693479
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.