These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 6006)

  • 1. Kinetic studies on glucoamylase of rabbit small intestine.
    Sivakami S; Radhakrishnan AN
    Biochem J; 1976 Feb; 153(2):321-7. PubMed ID: 6006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic studies on the substrate specificity and active site of rabbit muscle acid alpha-glucosidase.
    Matsui H; Sasaki M; Takemasa E; Kaneta T; Chiba S
    J Biochem; 1984 Oct; 96(4):993-1004. PubMed ID: 6394601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The maltase, glucoamylase and transglucosylase activities of acid -glucosidase from rabbit muscle.
    Palmer TN
    Biochem J; 1971 Oct; 124(4):713-24. PubMed ID: 5289198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Catalytic properties of a neutral alpha-glucosidase from human kidney].
    de Burlet G; Sudaka P
    Biochimie; 1977; 59(1):7-14. PubMed ID: 15632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maltitol and maltobionate act differently on maltose- and maltooligosaccharide hydrolysis by human small intestinal glucoamylase-maltase indicating two different enzyme binding modes.
    Günther S; Wehrspaun A; Heymann H
    Arch Biochem Biophys; 1996 Mar; 327(2):295-302. PubMed ID: 8619618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the active site of maltase-glucoamylase from the brush border of rabbit small intestine and kidney by chemical modification studies.
    Pereira B; Sivakami S
    Biochem J; 1991 Mar; 274 ( Pt 2)(Pt 2):349-54. PubMed ID: 2006904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of the Individual Small Intestinal α-Glucosidases to Digestion of Unusual α-Linked Glycemic Disaccharides.
    Lee BH; Rose DR; Lin AH; Quezada-Calvillo R; Nichols BL; Hamaker BR
    J Agric Food Chem; 2016 Aug; 64(33):6487-94. PubMed ID: 27480812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The substrate specificity of acid -glucosidase from rabbit muscle.
    Palmer TN
    Biochem J; 1971 Oct; 124(4):701-11. PubMed ID: 5131728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New approach to the metabolism of hydrogenated starch hydrolysate: hydrolysis by the maltase/glucoamylase complex of the rat intestinal mucosa.
    Rosiers C; Verwaerde F; Dupas H; Bouquelet S
    Ann Nutr Metab; 1985; 29(2):76-82. PubMed ID: 3922278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maltase-glucoamylase and trehalase in the rabbit small intestine and kidney brush border membranes during postnatal development, the effects of hydrocortisone.
    Galand G
    Comp Biochem Physiol A Comp Physiol; 1986; 85(1):109-15. PubMed ID: 2876804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the intestinal disaccharidases of the pigeon. III. Separation, purification and properties of sucrase-isomaltase and maltase-glucoamylase.
    Prakash K; Patil SD; Hegde SN
    Arch Int Physiol Biochim; 1983 Dec; 91(5):379-90. PubMed ID: 6204606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of maltitol on rat intestinal disaccharidases.
    Yoshizawa S; Moriuchi S; Hosoya N
    J Nutr Sci Vitaminol (Tokyo); 1975; 21(1):31-7. PubMed ID: 1151499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disaccharidase activities in camel small intestine: biochemical investigations of maltase-glucoamylase activity.
    Mohamed SA; Fahmy AS; Salah HA
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Jan; 146(1):124-30. PubMed ID: 17098455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic formation of a nonreducing L-ascorbic acid alpha-glucoside: purification and properties of alpha-glucosidases catalyzing site-specific transglucosylation from rat small intestine.
    Muto N; Nakamura T; Yamamoto I
    J Biochem; 1990 Feb; 107(2):222-7. PubMed ID: 2141837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of di- and monosaccharides on the proximo-distal gradient of carbohydrase activity of chick small intestine.
    Ozols A; Sheshukova T
    Comp Biochem Physiol A Comp Physiol; 1983; 74(3):761-4. PubMed ID: 6132720
    [No Abstract]   [Full Text] [Related]  

  • 16. Single active site mechanism of rabbit liver acid alpha-glucosidase.
    Onodera S; Matsui H; Chiba S
    J Biochem; 1989 Apr; 105(4):611-8. PubMed ID: 2668263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ostrich intestinal glycohydrolases: distribution, purification and partial characterisation.
    Oosthuizen V; Weldrick DP; Naudé RJ; Oelofsen W; Muramoto K; Kamiya H
    Int J Biochem Cell Biol; 1998 Mar; 30(3):339-52. PubMed ID: 9611776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acarbose and 1-deoxynojirimycin inhibit maltose and maltooligosaccharide hydrolysis of human small intestinal glucoamylase-maltase in two different substrate-induced modes.
    Breitmeier D; Günther S; Heymann H
    Arch Biochem Biophys; 1997 Oct; 346(1):7-14. PubMed ID: 9328278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characterization of a novel disaccharide transporter in lobster hepatopancreas.
    Scheffler O; Ahearn GA
    J Comp Physiol B; 2017 May; 187(4):563-573. PubMed ID: 28180997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human small intestinal maltase-glucoamylase cDNA cloning. Homology to sucrase-isomaltase.
    Nichols BL; Eldering J; Avery S; Hahn D; Quaroni A; Sterchi E
    J Biol Chem; 1998 Jan; 273(5):3076-81. PubMed ID: 9446624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.