These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Slow changes of potassium permeability in the squid giant axon. Ehrenstein G; Gilbert DL Biophys J; 1966 Sep; 6(5):553-66. PubMed ID: 5970562 [TBL] [Abstract][Full Text] [Related]
6. Response of delayed (K+) channels to the time-dependent clamping function in squid giant axon. I. Ascending ramps. Starzak ME; Senft JP; Starzak RJ Physiol Chem Phys; 1977; 9(6):513-32. PubMed ID: 614592 [TBL] [Abstract][Full Text] [Related]
7. [The ultrastructure, permeability and ionic channels of the squid axon]. Villegas R; Barnola FV; Villegas GM; Camejo G Acta Cient Venez; 1972; 23(0):suppl 3:40-6. PubMed ID: 4671272 [No Abstract] [Full Text] [Related]
8. Effects of barium on the potassium conductance of squid axon. Eaton DC; Brodwick MS J Gen Physiol; 1980 Jun; 75(6):727-50. PubMed ID: 6248618 [TBL] [Abstract][Full Text] [Related]
9. Fluctuations and noise in kinetic systems. Application to K+ channels in the squid axon. Chen YD; Hill TL Biophys J; 1973 Dec; 13(12):1276-95. PubMed ID: 4761576 [TBL] [Abstract][Full Text] [Related]
10. A single-file model for potassium transport in squid giant axon. Simulation of potassium currents at normal ionic concentrations. Kohler HH Biophys J; 1977 Aug; 19(2):125-40. PubMed ID: 880331 [TBL] [Abstract][Full Text] [Related]
11. Isomorphism on a physical system of the Hodgkin-Huxley equations for potassium conductance. Strandberg MW J Theor Biol; 1985 Nov; 117(2):161-85. PubMed ID: 2417063 [TBL] [Abstract][Full Text] [Related]
12. Exponentiated exponential model (Gompertz kinetics) of Na+ and K+ conductance changes in squid giant axon. Easton DM Biophys J; 1978 Apr; 22(1):15-28. PubMed ID: 638223 [TBL] [Abstract][Full Text] [Related]
13. Small-signal analysis of K+ conduction in squid axons. Moore LE; Fishman HM; Poussart DJ J Membr Biol; 1980 May; 54(2):157-64. PubMed ID: 7401167 [TBL] [Abstract][Full Text] [Related]
14. Potassium channel kinetics in squid axons with elevated levels of external potassium concentration. Clay JR Biophys J; 1984 Feb; 45(2):481-5. PubMed ID: 6320918 [TBL] [Abstract][Full Text] [Related]
15. A simple modification of the Hodgkin and Huxley equations explains type 3 excitability in squid giant axons. Clay JR; Paydarfar D; Forger DB J R Soc Interface; 2008 Dec; 5(29):1421-8. PubMed ID: 18544505 [TBL] [Abstract][Full Text] [Related]
16. The temperature dependence of the movement of sodium ions associated with nerve impulses. Cohen LB; Landowne D J Physiol; 1974 Jan; 236(1):95-111. PubMed ID: 4818526 [TBL] [Abstract][Full Text] [Related]
17. Determination of K(+)-channel relaxation times in squid axon membrane by Hodgkin-Huxley and by direct linear analysis. Fishman HM; Lipicky RJ Biophys Chem; 1991 Feb; 39(2):177-90. PubMed ID: 2059666 [TBL] [Abstract][Full Text] [Related]
18. Potassium homeostasis in the nervous system of cephalopods and crustacea. Pichon Y; Abbott NJ; Lieberman EM; Larmet Y J Physiol (Paris); 1987; 82(4):346-56. PubMed ID: 3503934 [TBL] [Abstract][Full Text] [Related]
19. On the theory of ion transport across the nerve membrane, VII. Cooperativity between channels of a large square lattice. Chen YD; Hill TL Proc Natl Acad Sci U S A; 1973 Jan; 70(1):62-5. PubMed ID: 4509665 [TBL] [Abstract][Full Text] [Related]
20. A NEW INTERPRETATION OF THE DYNAMIC CHANGES OF THE POTASSIUM CONDUCTANCE IN THE SQUID GIANT AXON. TILLE J Biophys J; 1965 Mar; 5(2):163-71. PubMed ID: 14268951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]