BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 6012514)

  • 1. Formation of methaemoglobin by phenylhydroxylamine and activity of glucose-6-phosphate dehydrogenase in the erythrocytes of different animal species.
    Burger A; Stöffler G; Uehleke H; Wagner J
    Med Pharmacol Exp Int J Exp Med; 1966; 15(5):525-9. PubMed ID: 6012514
    [No Abstract]   [Full Text] [Related]  

  • 2. [Limiting factors of methemoglobin formation through phenylhydroxylamine in the erythrocytes of cattle, sheep and swine].
    Wagner J; Burger A
    Naunyn Schmiedebergs Arch Pharmakol Exp Pathol; 1966; 254(2):138-51. PubMed ID: 4383121
    [No Abstract]   [Full Text] [Related]  

  • 3. [Limiting factors of methemoglobin formation through phenylhydroxylamine in hemolysates of different animal species].
    Uehleke H; Burger A; Wagner J
    Naunyn Schmiedebergs Arch Pharmakol Exp Pathol; 1966; 254(2):152-8. PubMed ID: 4383434
    [No Abstract]   [Full Text] [Related]  

  • 4. [Influencing by phenylhydroxylamine of the pentosephosphate pathway and glycolysis in erythrocytes during methemoglobin formation].
    Burger A; Wagner J; Uehleke H; Götz E
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1967; 256(3):333-47. PubMed ID: 4385221
    [No Abstract]   [Full Text] [Related]  

  • 5. [The glucose metabolism in erythrocytes during the methemoglobin formation through phenylhydroxylamine].
    Wagner J; Burger A; Uehleke H; Götz E
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 89(4):536-48. PubMed ID: 4176856
    [No Abstract]   [Full Text] [Related]  

  • 6. [Effect of phenylhydroxylamine on the activities of SH-enzymes innerythrocytes].
    Wagner J; Janata V; Manová I
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1968; 260(2):217. PubMed ID: 4239244
    [No Abstract]   [Full Text] [Related]  

  • 7. In vitro haematotoxic effects of three methylated hydroxylamines.
    Spooren AA; Evelo CT
    Arch Toxicol; 1997; 71(5):299-305. PubMed ID: 9137808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low erythrocyte glucose-6-phosphate dehydrogenase (G-6-PD) activity and susceptibility to carbaryl-induced methemoglobin formation and glutathione depletion.
    Calabrese EJ; Geiger CP
    Bull Environ Contam Toxicol; 1986 Apr; 36(4):506-9. PubMed ID: 3083896
    [No Abstract]   [Full Text] [Related]  

  • 9. Two mechanisms for toxic effects of hydroxylamines in human erythrocytes: involvement of free radicals and risk of potentiation.
    Evelo CT; Spooren AA; Bisschops RA; Baars LG; Neis JM
    Blood Cells Mol Dis; 1998 Sep; 24(3):280-95. PubMed ID: 10087986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GLUCOSE-6-PHOSPHATE AND 6-PHOSPHOGLUCONIC DEHYDROGENASE ACTIVITIES IN THE RED BLOOD CELLS OF SEVERAL ANIMAL SPECIES.
    SALVIDIO E; PANNACCIULLI I; TIZIANELLO A
    Nature; 1963 Oct; 200():372-3. PubMed ID: 14087898
    [No Abstract]   [Full Text] [Related]  

  • 11. Copper-induced GSH depletion and methaemoglobin formation in vitro in erythrocytes of some domestic animals and man. A comparative study.
    Sivertsen T
    Acta Pharmacol Toxicol (Copenh); 1980 Feb; 46(2):121-6. PubMed ID: 7361565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose-6-phosphate dehydrogenase activity in erythrocytes of experimental animals.
    Cheun LH
    J Clin Pathol; 1966 Nov; 19(6):614-6. PubMed ID: 4959180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of methyl oleate hydroperoxide, a possible toxic ozone intermediate, on human normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes.
    Williams P; Calabrese EJ; Moore GS
    Ecotoxicol Environ Saf; 1983 Apr; 7(2):242-8. PubMed ID: 6851934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [H2O2-formation during hemoglobin oxidation by phenylhydroxylamine in erythrocytes].
    Ellederová D; Wagner J; Kácl K
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1968; 260(2):109-10. PubMed ID: 4239149
    [No Abstract]   [Full Text] [Related]  

  • 15. Low glucose-6-phosphate dehydrogenase (G-6-PD) activity in red blood cells and susceptibility to copper-induced oxidative damage.
    Calabrese EJ; Moore GS; Ho SC
    Environ Res; 1980 Apr; 21(2):366-72. PubMed ID: 7408807
    [No Abstract]   [Full Text] [Related]  

  • 16. Methemoglobin formation and red cell metabolism in guinea pigs during chronic hypercapnia.
    Wood SC; Schaefer KE
    Respir Physiol; 1971 Dec; 13(3):267-73. PubMed ID: 4333923
    [No Abstract]   [Full Text] [Related]  

  • 17. The in vitro action of dapsone and its derivatives on normal and G6PD-deficient red cells.
    Scott GL; Rasbridge MR
    Br J Haematol; 1973 Mar; 24(3):307-17. PubMed ID: 4713632
    [No Abstract]   [Full Text] [Related]  

  • 18. [Determination of glucose-6-phosphate dehydrogenase activity in cattle and swine erythrocytes using the optical test under optimal measuring conditions].
    Weikart G; Grün E
    Arch Exp Veterinarmed; 1976; 30(5):773-85. PubMed ID: 1015971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities in erythrocytes by use of a centrifugal analyzer.
    Nicholson JF; Bodourian SH; Pesce MA
    Clin Chem; 1974 Oct; 20(10):1349-52. PubMed ID: 4153402
    [No Abstract]   [Full Text] [Related]  

  • 20. Biochemical processes involved in ferrihemoglobin formation by monohydroxyaniline derivatives in erythrocytes of birds and mammals.
    Blaauboer BJ; van Holsteijn CW; Wit JG
    Comp Biochem Physiol C Comp Pharmacol; 1979; 62C(2):199-203. PubMed ID: 37027
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.