These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 6018648)
1. D-glucose: preferential binding to brush borders disrupted with tris(hydroxymethyl)aminomethane. Faust RG; Wu SL; Faggard ML Science; 1967 Mar; 155(3767):1261-3. PubMed ID: 6018648 [TBL] [Abstract][Full Text] [Related]
2. Sodium-dependent binding of D-glucose to a filamentous fraction of Tris-disrupted brush borders from hamster jejunum. Faust RG; Shearin SJ; Misch DW Biochim Biophys Acta; 1972 Feb; 255(2):685-90. PubMed ID: 5057938 [No Abstract] [Full Text] [Related]
3. Active sugar transport by the small intestine. The effects of sugars, amino acids, hexosamines, sulfhydryl-reacting compounds, and cations on the preferential binding of D-glucose to tris-disrupted brush borders. Faust RG; Leadbetter MG; Plenge RK; McCaslin AJ J Gen Physiol; 1968 Sep; 52(3):482-94. PubMed ID: 5673303 [TBL] [Abstract][Full Text] [Related]
4. Effects of cations on D-glucose dissociation from tris-disrupted brush borders prepared from hamster jejunum. Faust RG; Leadbetter MG; Therrien EF Life Sci I; 1970 Nov; 9(21):1227-31. PubMed ID: 5477793 [No Abstract] [Full Text] [Related]
6. Phlorizin increases the permeability of intestinal mucosal membrane to sodium. Dinda PK; Beck IT Can J Physiol Pharmacol; 1987 Apr; 65(4):579-86. PubMed ID: 3607604 [TBL] [Abstract][Full Text] [Related]
7. Isoosmotic transport of fluid across the hamster small intestine in the presence of phlorizin-induced inhibition of sugar transport. Dinda PK; Beck M; Beck IT Can J Physiol Pharmacol; 1975 Jun; 53(3):375-82. PubMed ID: 1148924 [TBL] [Abstract][Full Text] [Related]
8. D-glucose and L-leucine transport by human intestinal brush-border membrane vesicles. Harig JM; Barry JA; Rajendran VM; Soergel KH; Ramaswamy K Am J Physiol; 1989 Mar; 256(3 Pt 1):G618-23. PubMed ID: 2923218 [TBL] [Abstract][Full Text] [Related]
9. Sodium pumps in the rat small intestine in relation to hexose transfer and metabolism. Barry RJ; Eggenton J; Smyth DH J Physiol; 1969 Oct; 204(2):299-310. PubMed ID: 5824640 [TBL] [Abstract][Full Text] [Related]
10. Sodium-dependent binding of L-histidine to a fraction of mucosal brush borders from hamster jejunum. Faust RG; Burns MJ; Misch DW Biochim Biophys Acta; 1970 Dec; 219(2):507-11. PubMed ID: 5497210 [No Abstract] [Full Text] [Related]
11. A Na+-dependent D-mannose transporter in the apical membrane of chicken small intestine epithelial cells. Cano M; Calonge ML; Peral MJ; Ilundáin AA Pflugers Arch; 2001 Feb; 441(5):686-91. PubMed ID: 11294251 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen ion-coupled transport of D-glucose by phlorizin-sensitive sugar carrier in intestinal brush-border membranes. Hoshi T; Takuwa N; Abe M; Tajima A Biochim Biophys Acta; 1986 Oct; 861(3):483-8. PubMed ID: 3768358 [TBL] [Abstract][Full Text] [Related]
13. Similarity in effects of Na+ gradients and membrane potentials on D-glucose transport by, and phlorizin binding to, vesicles derived from brush borders of rattit intestinal mucosal cells. Toggenburger G; Kessler M; Rothstein A; Semenza G; Tannenbaum C J Membr Biol; 1978 May; 40(3):269-90. PubMed ID: 660646 [TBL] [Abstract][Full Text] [Related]
14. Effect of phlorizin on galactose influx in rabbit intestine. Estep JA; Goldner AM Biochim Biophys Acta; 1974 Nov; 367(3):371-4. PubMed ID: 4429683 [No Abstract] [Full Text] [Related]
15. Glucose binding by intestinal brush borders of rats. Olsen WA; Rogers L Comp Biochem Physiol B; 1971 Jul; 39(3):617-25. PubMed ID: 4941538 [No Abstract] [Full Text] [Related]
16. Molecular weight of a D-glucose and L-histidine-binding protein from intestinal brush borders. Faust RG; Shearin SJ Nature; 1974 Mar; 248(5443):60-1. PubMed ID: 4818562 [No Abstract] [Full Text] [Related]
17. Differences in neutral amino acid and glucose transport between brush border and basolateral plasma membrane of intestinal epithelial cells. Hopfer U; Sigrist-Nelson K; Ammann E; Murer H J Cell Physiol; 1976 Dec; 89(4):805-10. PubMed ID: 137908 [TBL] [Abstract][Full Text] [Related]
18. Intestinal absorption in diabetes: binding of D-glucose to brush borders. Olsen WA; Rogers L Endocrinology; 1971 Nov; 89(5):1329-30. PubMed ID: 5097000 [No Abstract] [Full Text] [Related]
19. Sodium ion transport in isolated intestinal epithelial cells. The effect of actively transported sugars on sodium ion efflux. Gall DG; Butler DG; Tepperman F; Hamilton J Biochim Biophys Acta; 1974 Mar; 339(3):291-302. PubMed ID: 4834670 [No Abstract] [Full Text] [Related]
20. Competitive kinetics in the inhibition of sugar intestinal transport by phlorizin, in vivo. Rodríguez MJ; Ortiz M; Vázquez A; Lluch M; Ponz F Rev Esp Fisiol; 1982 Dec; 38(4):397-401. PubMed ID: 7170426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]