These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 6020562)

  • 1. Pathway of glucose fermentation in relation to the taxonomy of bifidobacteria.
    de Vries W; Stouthamer AH
    J Bacteriol; 1967 Feb; 93(2):574-6. PubMed ID: 6020562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbohydrate metabolism in Bifidobacterium bifidum.
    de Vries W; Gerbrandy SJ; Stouthamer AH
    Biochim Biophys Acta; 1967 Apr; 136(3):415-25. PubMed ID: 6048259
    [No Abstract]   [Full Text] [Related]  

  • 3. Catabolism of glucose and derivatives of 2-deoxy-2-amino-glucose in Bifidobacterium bifidum var. pennsylvanicus.
    Veerkamp JH
    Arch Biochem Biophys; 1969 Jan; 129(1):257-63. PubMed ID: 4236541
    [No Abstract]   [Full Text] [Related]  

  • 4. Bifid bacteria in bovine rumen. New species of the genus Bifidobacterium: B. globosum n.sp. and B. ruminale n.sp.
    Scardovi V; Trovatelli LD; Crociani F; Sgorbati B
    Arch Mikrobiol; 1969; 68(3):278-94. PubMed ID: 5393670
    [No Abstract]   [Full Text] [Related]  

  • 5. Fermentation of glucose, lactose, galactose, mannitol, and xylose by bifidobacteria.
    de Vries W; Stouthamer AH
    J Bacteriol; 1968 Aug; 96(2):472-8. PubMed ID: 5674058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical development of preimplantation mouse embryos: in vivo activities of fructose 1,6-diphosphate aldolase, glucose 6-phosphate dehydrogenase, malate dehydrogenase, and lactate dehydrogenase.
    Epstein CJ; Wegienka EA; Smith CW
    Biochem Genet; 1969 Jun; 3(3):271-81. PubMed ID: 5409407
    [No Abstract]   [Full Text] [Related]  

  • 7. Radiation responses in lactic acid bacteria in relation to adaptive alterations in fermentative pathways.
    Pradhan PG; Nadkarni GB
    Radiat Res; 1971 Nov; 48(2):377-85. PubMed ID: 5115775
    [No Abstract]   [Full Text] [Related]  

  • 8. Identification of an anaerobically induced phosphoenolpyruvate-dependent fructose-specific phosphotransferase system and evidence for the Embden-Meyerhof glycolytic pathway in the heterofermentative bacterium Lactobacillus brevis.
    Saier MH; Ye JJ; Klinke S; Nino E
    J Bacteriol; 1996 Jan; 178(1):314-6. PubMed ID: 8550437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sugar metabolism in the extremely halophilic bacterium Salinibacter ruber.
    Oren A; Mana L
    FEMS Microbiol Lett; 2003 Jun; 223(1):83-7. PubMed ID: 12799004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Bifidobacteria by the Phosphoketolase Assay.
    Modesto M; Checcucci A; Mattarelli P
    Methods Mol Biol; 2021; 2278():141-148. PubMed ID: 33649954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbohydrate catabolism of selected strains in the genus Agrobacterium.
    Arthur LO; Nakamura LK; Julian G; Bulla LA
    Appl Microbiol; 1975 Nov; 30(5):731-7. PubMed ID: 128316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The involvement of thiol groups in determining radiation responses of lactic acid bacteria.
    Pradhan PG; Nadkarni GB
    Radiat Res; 1971 Nov; 48(2):386-93. PubMed ID: 5115776
    [No Abstract]   [Full Text] [Related]  

  • 13. Starch gel electrophoresis of fructose-6-phosphate phophoketolase in the genus Bifidobacterium.
    Scardovi V; Sgorbati B; Zani G
    J Bacteriol; 1971 Jun; 106(3):1036-9. PubMed ID: 4997537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of oxygen and pH on the glucose metabolism of Lactobacillus casei var. rhamnosus ATCC 7469.
    Manderson GJ; Doelle HW
    Antonie Van Leeuwenhoek; 1972; 38(2):223-40. PubMed ID: 4537446
    [No Abstract]   [Full Text] [Related]  

  • 15. Transport and catabolism of D-fructose by Spirillum itersomii.
    Hylemon PB; Krieg NR; Phibbs PV
    J Bacteriol; 1974 Jan; 117(1):144-50. PubMed ID: 4808897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acquired resistance to bile increases fructose-6-phosphate phosphoketolase activity in Bifidobacterium.
    Sánchez B; Noriega L; Ruas-Madiedo P; de los Reyes-Gavilán CG; Margolles A
    FEMS Microbiol Lett; 2004 Jun; 235(1):35-41. PubMed ID: 15158259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chandlerella hawkingi: glucose utilization and glycolytic enzymes.
    Srivastava VM; Ghatak S; Murti CR
    Exp Parasitol; 1968 Dec; 23(3):339-46. PubMed ID: 5701760
    [No Abstract]   [Full Text] [Related]  

  • 18. Electrophoresis of glucose-6-phosphate dehydrogenase, cell wall composition and the taxonomy of heterofermentative lactobacilli.
    Williams RA; Sadler SA
    J Gen Microbiol; 1971 Mar; 65(3):351-8. PubMed ID: 5556680
    [No Abstract]   [Full Text] [Related]  

  • 19. Adenosine triphosphate-linked control of Pseudomonas aeruginosa glucose-6-phosphate dehydrogenase.
    Lessie T; Neidhardt FC
    J Bacteriol; 1967 Apr; 93(4):1337-45. PubMed ID: 4382249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bifidobacterium suis n. sp.: a new species of the genus Bifidobacterium isolated from pig feces.
    Matteuzzi D; Crociani F; Zani G; Trovatelli LD
    Z Allg Mikrobiol; 1971; 11(5):387-95. PubMed ID: 5168878
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.