These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 6020562)

  • 21. [Species of the genus bifdobacterium found in human vagina].
    Crociani F; Matteuzzi D; Ghazvinizadeh H
    Zentralbl Bakteriol Orig A; 1973 Mar; 223(2):298-302. PubMed ID: 4145835
    [No Abstract]   [Full Text] [Related]  

  • 22. [Alternative to the reaction sequence of allulose-6-phosphate pathway in a methylotrophic bacterium].
    Babel W; Miethe D
    Z Allg Mikrobiol; 1974; 14(2):153-6. PubMed ID: 4275962
    [No Abstract]   [Full Text] [Related]  

  • 23. [New concepts in taxonomy of bifidobacteria].
    Kandler O; Lauer E
    Zentralbl Bakteriol Orig A; 1974; 228(1):29-45. PubMed ID: 4154682
    [No Abstract]   [Full Text] [Related]  

  • 24. Factors determining the degree of anaerobiosis of Bifidobacterium strains.
    de Vries W; Stouthamer AH
    Arch Mikrobiol; 1969; 65(3):275-87. PubMed ID: 4915432
    [No Abstract]   [Full Text] [Related]  

  • 25. Expression of the xylulose 5-phosphate phosphoketolase gene, xpkA, from Lactobacillus pentosus MD363 is induced by sugars that are fermented via the phosphoketolase pathway and is repressed by glucose mediated by CcpA and the mannose phosphoenolpyruvate phosphotransferase system.
    Posthuma CC; Bader R; Engelmann R; Postma PW; Hengstenberg W; Pouwels PH
    Appl Environ Microbiol; 2002 Feb; 68(2):831-7. PubMed ID: 11823225
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fructose 6-phosphate phosphoketolase activity in wild-type strains of Lactobacillus, isolated from the intestinal tract of pigs.
    Bolado-Martínez E; Acedo-Félix E; Peregrino-Uriarte AB; Yepiz-Plascencia G
    Prikl Biokhim Mikrobiol; 2012; 48(5):494-500. PubMed ID: 23101386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of temperature on the activity and synthesis of glucose-catabolizing enzymes in Pseudomonas fluorescens.
    Lynch WH; MacLeod J; Franklin M
    Can J Microbiol; 1975 Oct; 21(10):1560-72. PubMed ID: 172202
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 6-Phosphogluconate dehydratase deficiency in pleiotropic carbohydrate-negative mutant strains of Pseudomonas aeruginosa.
    Blevins WT; Feary TW; Phibbs PV
    J Bacteriol; 1975 Mar; 121(3):942-9. PubMed ID: 163817
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphoketolase pathway dominates in Lactobacillus reuteri ATCC 55730 containing dual pathways for glycolysis.
    Arsköld E; Lohmeier-Vogel E; Cao R; Roos S; Rådström P; van Niel EW
    J Bacteriol; 2008 Jan; 190(1):206-12. PubMed ID: 17965151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Constitutive glucose-6-phosphate dehydrogenase in mutants utilizing glucose, which are derived from cryptic wildtype strains].
    König C; Sammler I; Wilde E; Schlegel HG
    Arch Mikrobiol; 1969; 67(1):51-7. PubMed ID: 4988637
    [No Abstract]   [Full Text] [Related]  

  • 31. Fermentation of glucose and xylose in ruminal strains of Butyrivibrio fibrisolvens.
    Marounek M; Petr O
    Lett Appl Microbiol; 1995 Oct; 21(4):272-6. PubMed ID: 7576521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pathways of carbohydrate oxidation during thermogenesis by the spadix of Arum maculatum.
    Rees T; Cerasi E; Wright BW
    Biochim Biophys Acta; 1976 Jun; 437(1):22-35. PubMed ID: 132968
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterofermentative metabolism of glucose and ribose and utilisation of citrate by the smooth biotype of Lactobacillus amylovorus NCFB 2745.
    Whitley K; Marshall VM
    Antonie Van Leeuwenhoek; 1999 Apr; 75(3):217-23. PubMed ID: 10427410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glucose and fructose metabolism in Zymomonas anaerobia.
    McGill DJ; Dawes EA
    Biochem J; 1971 Dec; 125(4):1059-68. PubMed ID: 4259336
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Changes in fructosediphosphate aldolase and glucose-6-phosphate dehydrogenase activity after irradiation of animals with an absolute lethal dose of gamma rays].
    Savitskiĭ IV; Musiĭko VA; Erigova SG
    Radiobiologiia; 1985; 25(2):245-9. PubMed ID: 4001326
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of glucose concentration on a number of enzymes involved in the aerobic and anaerobic utilization of glucose in turbidostat-cultures of Escherichia coli.
    Doelle HW; Hollywood N; Westwood AW
    Microbios; 1974; 9(36):221-32. PubMed ID: 4275702
    [No Abstract]   [Full Text] [Related]  

  • 37. Establishment of an alternative phosphoketolase-dependent pathway for fructose catabolism in Ralstonia eutropha H16.
    Fleige C; Kroll J; Steinbüchel A
    Appl Microbiol Biotechnol; 2011 Aug; 91(3):769-76. PubMed ID: 21519932
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of glucose on the level of glycolytic enzymes in yeast.
    Hommes FA
    Arch Biochem Biophys; 1966 Apr; 114(1):231-3. PubMed ID: 4224758
    [No Abstract]   [Full Text] [Related]  

  • 39. [Activity of key enzymes of the glycolytic and pentose phosphate pathways in plasmid-containing Staphylococci].
    Gavriliuk VG; Kozitskaia SN; Golodok LP; Vinnikov AI
    Ukr Biokhim Zh (1978); 1996; 68(1):45-8. PubMed ID: 8755100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases.
    Zgiby SM; Thomson GJ; Qamar S; Berry A
    Eur J Biochem; 2000 Mar; 267(6):1858-68. PubMed ID: 10712619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.