These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 6021177)

  • 1. Membrane specificity of Leuconostoc mesenteroides for the stereoisomeric forms of glycine and valine dipeptides.
    Yoder OC; Beamer KC; Shelton DC
    Can J Biochem; 1967 Feb; 45(2):213-20. PubMed ID: 6021177
    [No Abstract]   [Full Text] [Related]  

  • 2. KINETIC STUDIES OF L-VALINE AND GLYCYL-L-VALINE UPTAKE BY LEUCONOSTOC MESENTEROIDES.
    YODER OC; BEAMER KC; CIPOLLONI PB; SHELTON DC
    Arch Biochem Biophys; 1965 May; 110():336-40. PubMed ID: 14342729
    [No Abstract]   [Full Text] [Related]  

  • 3. UPTAKE OF VALINE AND GLYCYLVALINE BY LEUCONOSTOC MESENTEROIDES.
    SHELTON DC; NUTTER WE
    J Bacteriol; 1964 Oct; 88(4):1175-84. PubMed ID: 14219035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition and transport kinetic studies involving L-leucine, L-valine, and their dipeptides in Leuconostoc mesenteroides.
    Mayshak J; Yoder OC; Beamer KC; Shelton DC
    Arch Biochem Biophys; 1966 Jan; 113(1):189-94. PubMed ID: 5941984
    [No Abstract]   [Full Text] [Related]  

  • 5. Functional differences in Leuconostoc sensitive and resistant strains to mesenterocin 52A, a class IIa bacteriocin.
    Jasniewski J; Cailliez-Grimal C; Younsi M; Millière JB; Revol-Junelles AM
    FEMS Microbiol Lett; 2008 Dec; 289(2):193-201. PubMed ID: 19016881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The determination of glycine in protein hydrolysates with Leuconostoc mesenteroides P-60.
    SHANKMAN S; CAMIEN MN; DUNN MS
    J Biol Chem; 1947 Apr; 168(1):51-60. PubMed ID: 20291063
    [No Abstract]   [Full Text] [Related]  

  • 7. [Differentiation of aliphatic dipeptidases from cod muscle].
    Schmitt A; Siebert G
    Hoppe Seylers Z Physiol Chem; 1967 Aug; 348(8):1009-16. PubMed ID: 5595105
    [No Abstract]   [Full Text] [Related]  

  • 8. Specificity of iminodipeptidase: effect of alterations in the pyrrolidine ring of L-prolylglycine.
    DAVIS NC; ADAMS E
    Arch Biochem Biophys; 1955 Aug; 57(2):301-5. PubMed ID: 13259646
    [No Abstract]   [Full Text] [Related]  

  • 9. Some inhibitory interrelationships among leucine, isoleucine and valine.
    DIEN LT; RAVEL JM; SHIVE W
    Arch Biochem Biophys; 1954 Apr; 49(2):283-92. PubMed ID: 13159277
    [No Abstract]   [Full Text] [Related]  

  • 10. Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroides.
    Marty-Teysset C; Posthuma C; Lolkema JS; Schmitt P; Divies C; Konings WN
    J Bacteriol; 1996 Apr; 178(8):2178-85. PubMed ID: 8636016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. Isolation and sequence of a peptide containing an essential lysine.
    Haghighi B; Flynn TG; Levy HR
    Biochemistry; 1982 Dec; 21(25):6415-20. PubMed ID: 6817791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Antifungal Peptides Produced by Leuconostoc mesenteroides DU15 Effectively Inhibit Growth of Aspergillus niger.
    Muhialdin BJ; Hassan Z; Abu Bakar F; Algboory HL; Saari N
    J Food Sci; 2015 May; 80(5):M1026-30. PubMed ID: 25847317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valine transport and biodiversity of Leuconostoc wild strains from French raw milk cheeses.
    Gendrot F; Ferchichi M; Winters DA; Hemme D
    Syst Appl Microbiol; 2000 Dec; 23(4):461-8. PubMed ID: 11249015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of C14 labeled glycine, L-histidine, L-leucine, and L-lysine.
    BORSOOK H; DEASY CL; HAAGENSMIT AJ; KEIGHLEY G; LOWY PH
    J Biol Chem; 1950 Dec; 187(2):839-48. PubMed ID: 14803468
    [No Abstract]   [Full Text] [Related]  

  • 15. Uptake of glycine from L-alanylglycine into renal brush border vesicles.
    Welch CL; Campbell BJ
    J Membr Biol; 1980; 54(1):39-50. PubMed ID: 7205942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The characterization of dipeptidases from Escherichia coli.
    Payne JW
    J Gen Microbiol; 1972 Jul; 71(2):267-79. PubMed ID: 4625926
    [No Abstract]   [Full Text] [Related]  

  • 17. Intestinal transport of dipeptides in man: relative importance of hydrolysis and intact absorption.
    Adibi SA
    J Clin Invest; 1971 Nov; 50(11):2266-75. PubMed ID: 5096512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PARTICIPATION OF PYRIDOXAL PHOSPHATE IN ACTIVE TRANSPORT OF AMINO ACIDS ACROSS CELL MEMBRANES.
    BRAUNSHTEIN AE; VILENKINA GY; BRUSOVA LV
    Fed Proc Transl Suppl; 1964; 23():957-9. PubMed ID: 14215301
    [No Abstract]   [Full Text] [Related]  

  • 19. Studies of glycine metabolism and transport in fibroblasts from patients with nonketotic hyperglycinemia.
    Halton DM; Krieger I
    Pediatr Res; 1980 Aug; 14(8):932-4. PubMed ID: 6775275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mannitol dehydrogenase gene (mdh) from Leuconostoc mesenteroides is distinct from other known bacterial mdh genes.
    Aarnikunnas J; Rönnholm K; Palva A
    Appl Microbiol Biotechnol; 2002 Sep; 59(6):665-71. PubMed ID: 12226722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.