These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 6022866)

  • 1. Ion transport by heart mitochondria. 8. Activation of the adenosine triphosphate-supported accumulation of mg++ by zn++ and by rho-chloromercuriphenylsulfonate.
    Brierley GP; Jacobus WE; Hunter GR
    J Biol Chem; 1967 May; 242(9):2192-8. PubMed ID: 6022866
    [No Abstract]   [Full Text] [Related]  

  • 2. Activation of Mg++ accumulation in isolated heart mitochondria by Zn++ and by p-chloromercuribenzene sulfonate.
    Brierley GP; Bhattacharyya RN
    Biochem Biophys Res Commun; 1966 Jun; 23(5):647-51. PubMed ID: 5963889
    [No Abstract]   [Full Text] [Related]  

  • 3. Ion transport by heart mitochondria. XXI. Differential effects of mercurial reagents on adenosine triphosphatase activity and on adenosine triphosphate-dependent swelling and contraction.
    Brierley GP; Scott KM; Jurkowitz M
    J Biol Chem; 1971 Apr; 246(7):2241-51. PubMed ID: 4252222
    [No Abstract]   [Full Text] [Related]  

  • 4. Determination of intramitochondrial pH and intramitochondrial-extramitochondrial pH gradient of isolated heart mitochondria by the use of 5,5-dimethyl-2,4-oxazolidinedione. I. Changes during respiration and adenosine triphosphate-dependent transport of Ca++, Mg++, and Zn++.
    Addanki A; Cahill FD; Sotos JF
    J Biol Chem; 1968 May; 243(9):2337-48. PubMed ID: 5648435
    [No Abstract]   [Full Text] [Related]  

  • 5. Mechanistic implications of Mg++, adenine nucleotide, and inhibitor effects on energy-linked reactions of submitochondrial particles.
    Mitchell RA; Hill RD; Boyer PD
    J Biol Chem; 1967 Apr; 242(8):1793-801. PubMed ID: 6024770
    [No Abstract]   [Full Text] [Related]  

  • 6. Properties of an oligomycin-sensitive adenosine diphosphate-adenosine triphosphate exchange reaction in intact beef heart mitochondria.
    Bygrave FL; Lehninger AL
    J Biol Chem; 1966 Sep; 241(17):3894-903. PubMed ID: 5920801
    [No Abstract]   [Full Text] [Related]  

  • 7. Ion transport by heart mitochondria. VII. Activation of the energy-linked accumulation of Mg++ by Zn++ and other cations.
    Brierley GP
    J Biol Chem; 1967 Mar; 242(6):1115-22. PubMed ID: 6023566
    [No Abstract]   [Full Text] [Related]  

  • 8. Ion transport by heart mitochondria. XXII. Spontaneous, energy-linked accumulation of acetate and phosphate salts of monovalent cations.
    Brierley GP; Jurkowitz M; Scott KM; Merola AJ
    Arch Biochem Biophys; 1971 Dec; 147(2):545-56. PubMed ID: 5136102
    [No Abstract]   [Full Text] [Related]  

  • 9. Activation energies for the ATP-driven reversal of oxidative phosphorylation in submitochondrial particles.
    Stekhoven FM; Sani BP; Sanadi DR
    Biochim Biophys Acta; 1971 Jan; 226(1):20-32. PubMed ID: 5549984
    [No Abstract]   [Full Text] [Related]  

  • 10. Active cation transport and ATP hydrolysis in Acanthamoeba sp.
    Klein RL; Breland AP
    Comp Biochem Physiol; 1966 Jan; 17(1):39-47. PubMed ID: 4287303
    [No Abstract]   [Full Text] [Related]  

  • 11. Tetradifon: an oligomycin-like inhibitor of energy-linked activities of rat liver mitochondria.
    Bustamante E; Pedersen PL
    Biochem Biophys Res Commun; 1973 Mar; 51(2):292-8. PubMed ID: 4266412
    [No Abstract]   [Full Text] [Related]  

  • 12. STUDIES ON ION TRANSPORT. III. THE ACCUMULATION OF CALCIUM AND INORGANIC PHOSPHATE BY HEART MITOCHONDRIA.
    BRIERLEY GP; MURER E; BACHMANN E
    Arch Biochem Biophys; 1964 Apr; 105():89-102. PubMed ID: 14165509
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on oxidative phosphorylation. XIX. Functional site of factor B in energy transfer reactions.
    Lam KW; Yang SS
    Arch Biochem Biophys; 1969 Sep; 133(2):366-72. PubMed ID: 4309592
    [No Abstract]   [Full Text] [Related]  

  • 14. Ion accumulation in heart mitochondria supported by the oxidation of reduced cytochrome c.
    Brierley GP; Murer E
    Biochem Biophys Res Commun; 1964; 14():437-42. PubMed ID: 5836538
    [No Abstract]   [Full Text] [Related]  

  • 15. Ion transport by heart mitochondria. XXVI. Carrier-mediated anion transport by isolated beef heart mitochondria.
    Scott KM; Jurkowitz M; Brierley GP
    Arch Biochem Biophys; 1972 Dec; 153(2):682-94. PubMed ID: 4676907
    [No Abstract]   [Full Text] [Related]  

  • 16. Energy-linked reactions in mitochondria. Studies on the reduction of NAD+ by succinate.
    Griffiths DE; Roberton AM
    Biochim Biophys Acta; 1966 Jan; 113(1):13-26. PubMed ID: 4287344
    [No Abstract]   [Full Text] [Related]  

  • 17. [Relation between ion transport and oxidative phosphorylation in the internal mitochondrial membrane].
    Lorusso M; Simone S; Ferrarese V; Pansini A; Di Noia S; Papa S
    Boll Soc Ital Biol Sper; 1974 Mar; 50(6):331-7. PubMed ID: 4447743
    [No Abstract]   [Full Text] [Related]  

  • 18. Calcium transport in mitochondria.
    Carafoli E; Rossi CS
    Adv Cytopharmacol; 1971 May; 1():209-27. PubMed ID: 4271024
    [No Abstract]   [Full Text] [Related]  

  • 19. Induction of K+ transport in isolated heart mitochondria by zinc ions.
    Brierley GP; Bhattacharyya RN; Walker JG
    Biochem Biophys Res Commun; 1966 Jul; 24(2):269-73. PubMed ID: 5965235
    [No Abstract]   [Full Text] [Related]  

  • 20. Adenine nucleotide translocation in cauliflower mitochondria.
    Janovitz A; Chávez E; Klapp M
    Arch Biochem Biophys; 1976 Mar; 173(1):264-8. PubMed ID: 130834
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.