These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6023219)

  • 1. N5-methyltetrahydrofolate-homocysteine transmethylase. Propylation characteristics with the use of a chemical reducing system and purified enzyme.
    Taylor RT; Weissbach H
    J Biol Chem; 1967 Apr; 242(7):1509-16. PubMed ID: 6023219
    [No Abstract]   [Full Text] [Related]  

  • 2. N5-methyltetrahydrofolate-homocysteine transmethylase. Partial purification and properties.
    Taylor RT; Weissbach H
    J Biol Chem; 1967 Apr; 242(7):1502-8. PubMed ID: 5337043
    [No Abstract]   [Full Text] [Related]  

  • 3. N5-methyltetrahydrofolate-homocysteine transmethylase. Role of S-adenosylmethionine in vitamin B12-dependent methionine synthesis.
    Taylor RT; Weissbach H
    J Biol Chem; 1967 Apr; 242(7):1517-21. PubMed ID: 5337044
    [No Abstract]   [Full Text] [Related]  

  • 4. Chemical propylation of vitamin-B12 transmethylase: anomalous behavior of S-adenosyl-L-methionine.
    Taylor RT; Whitfield C; Weissbach H
    Arch Biochem Biophys; 1968 Apr; 125(1):240-52. PubMed ID: 4870151
    [No Abstract]   [Full Text] [Related]  

  • 5. Escherichia coli B N5-methyltetrahydrofolate-homocysteine vitamin-B12 transmethylase: formation and photolability of a methylcobalamin enzyme.
    Taylor RT; Weissbach H
    Arch Biochem Biophys; 1968 Jan; 123(1):109-26. PubMed ID: 4865805
    [No Abstract]   [Full Text] [Related]  

  • 6. Studies on the nature of the bound cobamide in E. coli N5-methyltetrahydrofolate-homocysteine transmethylase.
    Ertel R; Brot N; Taylor R; Weissbach H
    Arch Biochem Biophys; 1968 Jul; 126(1):353-7. PubMed ID: 4876423
    [No Abstract]   [Full Text] [Related]  

  • 7. Escherichia coli B N5-methyltetrahydrofolate-homocysteine methyltransferase: sequential formation of bound methylcobalamin with S-adenosyl-L-methionine and N5-methyltetrahydrofolate.
    Taylor RT; Weissbach H
    Arch Biochem Biophys; 1969 Feb; 129(2):728-44. PubMed ID: 4886251
    [No Abstract]   [Full Text] [Related]  

  • 8. Escherichia coli B 5-methyltetrahydrofolate-homocysteine cobalamin methyltransferase: catalysis by a reconstituted methyl-14C-cobalamin holoenzyme and the function of S-adenosyl-l-methionine.
    Taylor RT; Hanna ML
    Arch Biochem Biophys; 1970 Apr; 137(2):453-9. PubMed ID: 4909167
    [No Abstract]   [Full Text] [Related]  

  • 9. Formation of the N5-methyltetrahydrofolate-homocysteine methyltransferase holoenzyme from apoenzyme and adenosyl-B 12.
    Rosales F; Ritari SJ; Sakami W
    Biochem Biophys Res Commun; 1970 Jul; 40(2):271-6. PubMed ID: 4319824
    [No Abstract]   [Full Text] [Related]  

  • 10. ENZYMATIC SYNTHESIS OF METHIONINE. CHEMICAL ALKYLATION OF THE ENZYME-BOUND COBAMIDE.
    BROT N; WEISSBACH H
    J Biol Chem; 1965 Jul; 240():3064-70. PubMed ID: 14342334
    [No Abstract]   [Full Text] [Related]  

  • 11. Inhibition of N5-methyltetrahydrofolate - homocysteine transmethylase by a vitamin B12-antimetabolite.
    Kageyama M; Perlman D
    Biochem Biophys Res Commun; 1976 May; 76(2):420-3. PubMed ID: 829218
    [No Abstract]   [Full Text] [Related]  

  • 12. Escherichia coli B 5-methyltetrahydrofolate-homocysteine cobalamin methyltransferase: resolution and reconstitution of holoenzyme.
    Taylor RT
    Arch Biochem Biophys; 1970 Apr; 137(2):529-46. PubMed ID: 4909170
    [No Abstract]   [Full Text] [Related]  

  • 13. Escherichia coli B N5-methyltetrahydrofolate-homocysteine cobalamin methyltransferase: activation with S-adenosyl-L-methionine and the mechanism for methyl group transfer.
    Taylor RT; Weissbach H
    Arch Biochem Biophys; 1969 Feb; 129(2):745-66. PubMed ID: 4886252
    [No Abstract]   [Full Text] [Related]  

  • 14. Isolation of methyl-B-12 from Escherichia coli B N-5-methyl-H-4-folate-homocysteine vitamin-B-12 transmethylase.
    Taylor RT; Weissbach H
    Biochem Biophys Res Commun; 1967 May; 27(3):398-404. PubMed ID: 5340657
    [No Abstract]   [Full Text] [Related]  

  • 15. Mechanism of mammalian cobalamin-dependent methionine biosynthesis.
    Burke GT; Mangum JH; Brodie JD
    Biochemistry; 1971 Aug; 10(16):3079-85. PubMed ID: 5126926
    [No Abstract]   [Full Text] [Related]  

  • 16. ENZYMATIC SYNTHESIS OF COENZYME B12.
    PETERKOFSKY A; WEISSBACH H
    Ann N Y Acad Sci; 1964 Apr; 112():622-37. PubMed ID: 14167295
    [No Abstract]   [Full Text] [Related]  

  • 17. Binding of substrate to N5-methyl-tetrahydroteroyl-triglutamate-homocysteine transmethylase.
    Whitfield CD; Weissbach H
    Biochem Biophys Res Commun; 1968 Dec; 33(6):996-1003. PubMed ID: 4884788
    [No Abstract]   [Full Text] [Related]  

  • 18. Isolation of a cobalamin containing 5-methyltetrahydrofolate-homocysteine transmethylase from mammalian kidney.
    Mangum JH; North JA
    Biochemistry; 1971 Sep; 10(20):3765-9. PubMed ID: 5096397
    [No Abstract]   [Full Text] [Related]  

  • 19. Escherichia coli B cobalamin methyltransferase: ability of diaphorases and lipoamide dehydrogenases to function as reducing agents.
    Taylor RT; Hanna ML
    Arch Biochem Biophys; 1970 Jul; 139(1):149-63. PubMed ID: 4319457
    [No Abstract]   [Full Text] [Related]  

  • 20. Methionine biosynthesis in Ochromonas malhamensis.
    Griffiths JM; Daniel LJ
    Arch Biochem Biophys; 1969 Nov; 134(2):463-72. PubMed ID: 4311184
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.