These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 6024807)

  • 61. Effects of replacing soybean meal with canola meal differing in rumen-undegradable protein content on ruminal fermentation and gas production kinetics using 2 in vitro systems.
    Paula EM; Monteiro HF; Silva LG; Benedeti PDB; Daniel JLP; Shenkoru T; Broderick GA; Faciola AP
    J Dairy Sci; 2017 Jul; 100(7):5281-5292. PubMed ID: 28456405
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Factors affecting the variability of an in vitro rumen fermentation technique for estimating forage quality.
    Nelson BD; Ellzey HD; Montgomery C; Morgan EB
    J Dairy Sci; 1972 Mar; 55(3):358-66. PubMed ID: 5010386
    [No Abstract]   [Full Text] [Related]  

  • 63. Studies on the biochemical processes in the rumen. VII. 'In vitro' digestion of cellulose in cattle and buffalo.
    Ichhponani JS; Makker GS; Sidhu GS
    Indian Vet J; 1971 Jun; 48(6):583-6. PubMed ID: 5566709
    [No Abstract]   [Full Text] [Related]  

  • 64. Variation Among Orchardgrass (Dactylis glomerata) Germplasm for Choke Prevalence Caused by Epichloë typhina.
    Bushman BS; Singh D; Lamp R; Young CA; Charlton ND; Robins JG; Anderson N
    Plant Dis; 2019 Feb; 103(2):324-330. PubMed ID: 30522401
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Model of cellulose disappearance from the rumen.
    Waldo DR; Smith LW; Cox EL
    J Dairy Sci; 1972 Jan; 55(1):125-9. PubMed ID: 5009526
    [No Abstract]   [Full Text] [Related]  

  • 66. Effect of delignification upon in vitro digestion of forage cellulose.
    Darcy BK; Belyea RL
    J Anim Sci; 1980 Oct; 51(4):798-803. PubMed ID: 7462109
    [TBL] [Abstract][Full Text] [Related]  

  • 67. In vitro screening of natural feed additives from crustaceans, diatoms, seaweeds and plant extracts to manipulate rumen fermentation.
    Belanche A; Ramos-Morales E; Newbold CJ
    J Sci Food Agric; 2016 Jul; 96(9):3069-78. PubMed ID: 26441121
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of dried oregano (Origanum vulgare L.) plant material in feed on methane production, rumen fermentation, nutrient digestibility, and milk fatty acid composition in dairy cows.
    Olijhoek DW; Hellwing ALF; Grevsen K; Haveman LS; Chowdhury MR; Løvendahl P; Weisbjerg MR; Noel SJ; Højberg O; Wiking L; Lund P
    J Dairy Sci; 2019 Nov; 102(11):9902-9918. PubMed ID: 31495619
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effect of sulphate ion on the in vitro rumen digestion of polysaccharide constituents of bagasse.
    Dekker RF; Richards GN
    Aust J Biol Sci; 1972 Dec; 25(6):1377-9. PubMed ID: 4658443
    [No Abstract]   [Full Text] [Related]  

  • 70. Effect of monensin on fermentation of hay and wheat bran investigated by the Rumen Simulation Technique (Rusitec). 2. End-products of fermentation and protein synthesis.
    Jalc D; Baran M; Vendrák T; Siroka P
    Arch Tierernahr; 1992; 42(2):153-8. PubMed ID: 1338406
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Carbohydrate fermentation in the rumen--variations on a theme.
    Sutton JD
    Proc Nutr Soc; 1979 Dec; 38(3):275-81. PubMed ID: 531019
    [No Abstract]   [Full Text] [Related]  

  • 72. Influence of rumen fermentation on response to endophyte-infected tall fescue seed measured by a rat bioassay.
    Westendorf ML; Mitchell GE; Tucker RE
    Drug Chem Toxicol; 1992; 15(4):351-64. PubMed ID: 1459045
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Transcriptome profiling of two Dactylis glomerata L. cultivars with different tolerance in response to submergence stress.
    Zeng B; Zhang Y; Zhang A; Qiao D; Ren J; Li M; Cai K; Zhang J; Huang L
    Phytochemistry; 2020 Jul; 175():112378. PubMed ID: 32315838
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Influence of rumen fluid source and fermentation time on in vitro true dry matter digestibility.
    Grant RJ; Van Soest PJ; McDowell RE
    J Dairy Sci; 1974 Oct; 57(10):1201-5. PubMed ID: 4427003
    [No Abstract]   [Full Text] [Related]  

  • 75. The microbial flora of the rumen of cows fed hay and high cereal rations and its relationship to the rumen fermentation.
    Latham MJ; Sharpe ME; Sutton JD
    J Appl Bacteriol; 1971 Jun; 34(2):425-34. PubMed ID: 4939274
    [No Abstract]   [Full Text] [Related]  

  • 76. In situ identification of carboxymethyl cellulose-digesting bacteria in the rumen of cattle fed alfalfa or triticale.
    Kong Y; Xia Y; Seviour R; He M; McAllister T; Forster R
    FEMS Microbiol Ecol; 2012 Apr; 80(1):159-67. PubMed ID: 22224860
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effect of the ionophore monensin and tannin extracts supplemented to grass silage on populations of ruminal cellulolytics and methanogens in vitro.
    Witzig M; Zeder M; Rodehutscord M
    Anaerobe; 2018 Apr; 50():44-54. PubMed ID: 29408017
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effects of Aspergillus spp. exogenous fibrolytic enzymes on in vitro fermentation of tropical forages.
    Facchini FD; Reis VR; Roth AP; Magalhães KA; Peixoto-Nogueira SC; Casagrande DR; Reis RA; Polizeli Mde L
    J Sci Food Agric; 2012 Sep; 92(12):2569-73. PubMed ID: 22508186
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Studies on the origin of Dactylis glomerata L.
    MYERS WM
    Genetics; 1948 Jan; 33(1):117. PubMed ID: 18903868
    [No Abstract]   [Full Text] [Related]  

  • 80. Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro.
    Mouriño F; Akkarawongsa R; Weimer PJ
    J Dairy Sci; 2001 Apr; 84(4):848-59. PubMed ID: 11352162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.